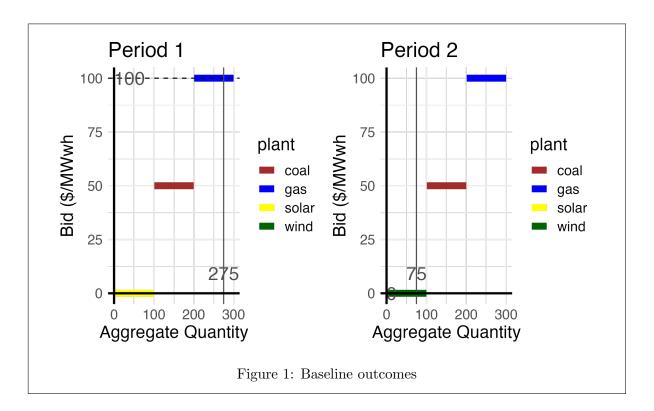
Baseline: No Battery

Consider an electricity system with the following capacities and (private) marginal costs:


Type	Capacity Period 1	Capacity Period 2	MC
Solar	100	0	0
Wind	0	100	0
Coal	100	100	50
Gas	100	100	100

Every plant is small, and there is no market power. But solar plants can only produce during period 1, and wind plants can only produce during period 2.

There are two equally likely, perfectly inelastic, demand scenarios: period 1 demand of $275~\mathrm{MW}$ and period 2 demand of $75~\mathrm{MW}$.

1. What is the price in each period? How much does each type of plant produce in each period?

Solutio	solution:								
See the	"baseline"	rows b	elow.						
plant	case	prod	avgP	profit					
coal	baseline	100	100	5000					
coal	storage	150	50	0					
gas	baseline	75	100	0					
gas	storage	0	0	0					
solar	baseline	100	100	10000					
solar	storage	100	50	5000					
wind	baseline	75	0	0					
wind	storage	100	50	5000					

2. How much total operating profit does solar earn in this market?

Solution:

10,000. It sells 100 MW at a price of 100 in period 1, and has zero costs.

3. How much total operating profit does wind earn in this market?

Solution:

Zero. It sells 75 MW in period 2, but at a price of zero.

Battery Enters the Market

An independently owned 75 MW battery enters the market. It charges the battery (buys 75 MW of power) in period 2, and then discharges the battery (supplies 75 MW of power) in period 1.

4. What is the price in each period now? How much does each type of plant produce in each period?

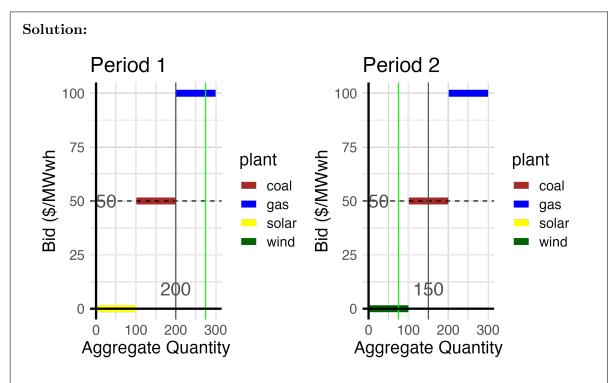


Figure 2: Baseline outcomes

See the "storage" rows below.

plant	case	prod	avgP	profit
coal	baseline	100	100	5000
coal	storage	150	50	0
gas	baseline	75	100	0
gas	storage	0	0	0
solar	baseline	100	100	10000
solar	storage	100	50	5000
wind	baseline	75	0	0
wind	storage	100	50	5000

5. How much total operating profit does the solar earn in this market now? How much does wind earn?

Solution:

Solar still sells 100 MW, but at a lower price of 50, for a total of 5,000. Wind sells 100 MW at a price of 50, for a total of 5,000.

6. Consider the impact on consumers. Compared to the world with no batteries, are consumers better off?

Solution:

Total expenditure on energy in the baseline is \$275,000. Total with the battery is \$175,000. So consumers are better off.