Can Retailers Inform Consumers about Energy Costs? Evidence from a Field Experiment

Hunt Allcott¹ Richard Sweeney²

¹NYU Department of Economics, NBER, JPAL, ideas42, and E2e

²Harvard Kennedy School

February 17, 2016

How do consumers learn about product quality?

Mechanisms:

- 1. Government-mandated information disclosure
- 2. Learning from other consumers
- 3. Learning from the seller

Our question: How effectively can retailers encourage adoption of energy efficient products?

- Our setting: Sales agents advise consumers, provide verifiable info
- Other examples: Retail stores, pharmaceuticals, financial advisers, autos

Preview

What we do:

- Focus on water heaters:
 - Second largest home energy use: Energy cost = \$29 billion/year
 - Lifetime energy cost \gg Upfront price
 - ► Mundane product ⇒ Conceptually interesting
- ▶ Randomized control trial (RCT) with large nationwide Retailer
 - At call center: Vary Energy Star info, rebates, and sales incentives
 - Measure effects on demand
- Extensive surveys and audits of sales agents and consumers

Key insights:

- Treatments remarkably ineffective at increasing Energy Star sales.
- The Retailer's ability to increase Energy Star demand depends on how well it can motivate sales agents.
- Sales agents won't suggest Energy Star if they know consumers are uninterested.

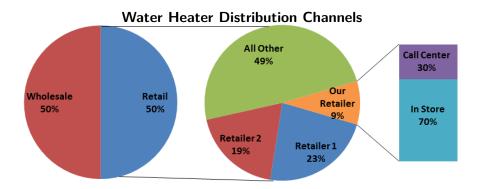
- 1. Background on water heater market
- 2. Simple theoretical model
- 3. Experimental design and data
- 4. Results

Related Literature: Information Disclosure

- ▶ Information disclosure in other domains; see Dranove and Jin (2010):
 - Financial decisions: Choi, Laibson, and Madrian (2010), Duarte and Hastings (2012)
 - Securities: Greenstone, Oyer, and Vissing-Jorgensen (2006)
 - Social programs: Bhargava and Manoli (2013)
 - Health insurance plans: Jin and Sorensen (2006), Kling et al. (2012), Scanlon et al. (2002)
 - Hospitals: Pope (2009)
 - Health and Nutrition: Bollinger, Leslie, and Sorensen (2011), Luo et al. (2012)
 - Restaurant hygiene: Jin and Leslie (2009)
 - HIV risk: Dupas (2011)
 - School choice: Figlio and Lucas (2004), Hastings and Weinstein (2008)
 - Certification markets: Jin, Kato, and List (2010)
- Our setting highlights information disclosure through imperfectly-compliant sales agents. Special features:
 - In equilibrium, agent behavior is informative about consumer demand
 - We have unusual direct data on sales agent behavior

Allcott and Sweeney

Can Retailers Inform Consumers about Energy Costs?


Related Literature: Energy Use Information

- Use large-sample RCT to study the effects of seller-provided durable good energy use information on purchases
- Related:
 - How social comparisons affect takeup of energy efficient durables: Allcott and Rogers (2014), Brandon, List, Metcalfe, and Price (2014), Herberich, List, and Price (2011), Toledo (2013)
 - How durable good energy use information affects stated preference: Deutsch (2010a, 2010b), Newell and Siikamaki (2013), Ward, Clark, Jensen, Yen, and Russell (2011)
 - Large sample *observational data* (non-randomized): Kallbekken, Saelen, and Hermansen (2013)
 - ▶ RCTs with a *very small sample* of units (Anderson and Claxton 1982)
 - Experimenter-provided information (Allcott and Taubinsky 2013)

Market

Market Overview

- Approx one water heater per US household
- Half fueled by natural gas

▶ 96% of production from three manufacturers

Standard vs. Energy Star Models

▶ 6-year warranty: ~\$220 incremental price, ~\$40/year savings

- 13-18% IRR
- But Energy Star market share ~1/30.
- 12-year warranty: Energy Star bundled with premium features

Table: Water Heater Model Overview

	40 C	Gallon	50 C	Gallon
Warranty	б year	12 year	бyear	12 year
Price (\$)				
Standard	420	620	485	665
Energy Star	645	969	700	1020
Annual Energy Cost (\$/ year)				
Standard	309	290	315	294
Energy Star	272	261	272	261
Undiscounted payback period (years)	6.1	12.0	5.0	10.8
IRR (at 13 year average life)	13%	1%	18%	3%
Market Share				
Standard	17.6%	6.1%	10.1%	10.4%
Energy Star	0.6%	0.5%	0.2%	0.7%

Experimental Design

		Info, Rebates,			Consumers	
		and Info x		Spiff x	in	
Phase	Dates	Rebates	Spiff	Rebates	Sample	Sales
1	Nov 21-April 6	Yes			12,629	4,675
2	April 7-June 13	Yes	Yes		7,254	2,523
3	June 14-July 6	Yes	Yes	Yes	1,974	715
4	July 7-July 26	Yes			1,490	362

- ► Caller gives name and phone number ⇒unique reference number
- Website randomly assigns reference number to treatment group
- Extensive internal effort to encourage agent compliance

Information Treatment Script

Let me take a moment to tell you about our Energy Star models. Energy Star water heaters cost about \$220 more than a standard model, but they save a typical household \$40 each year, so you would make up that price difference in about six years. Over 12 years, which is the normal life of a water heater, you would save \$480 in energy bills. Energy Star models may not be available for every home. If possible, would an Energy Star water heater be of interest to you?

\$100 Energy Star Rebate Script

I have good news. [Retailer] has specially selected you for a \$100 rebate on any Energy Star water heater. Energy Star models may not be available for every home. If possible, would an Energy Star water heater be of interest to you?

Data

- Retailer call database: Caller reference number, treatment assignment, sales agent ID
 - If purchase: Model purchased and customer address
- Customer data
 - Address-level (Acxiom):
 - ▶ Home Value, College Grad, Age, Household Size, Democrat
 - Environmentalist indicator (Contributes to environmental causes; subscribes to environmental magazines)
 - Green Living indicator (Environmentalist indicator | buys green products or organic foods)
 - Zip-level: Median Income (Census), Hybrid Share (Polk)
- ► Follow-up surveys for 1,091 callers (891 purchasers)
- Independent audits of 2,129 calls
- Sales agent endline survey

Model of Sales Agent Disclosure

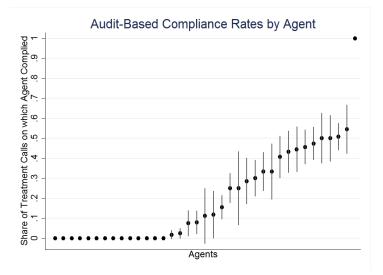
Setup:

- Consumers choose between low- and high-quality good
 - Primitives imply market-level price and information elasticities
- Monopolist sets prices and discloses information
 - So far, a standard advertising model, like Dixit and Norman (1979), Dorfman and Steiner (1954), Shapiro (1980), etc.
- In our model, sales agents disclose information
 - Disclosure is costly, firm does not observe
 - Firm sets sales incentive to influence disclosure
 - Sales agents optimize

Predictions:

- 1. If info doesn't affect demand, agents won't disclose info
- 2. If info doesn't affect demand, agent incentives don't increase disclosure
- 3. Lower prices and higher sales incentives reinforce each other

Results


- 1. Sales agent behavior
- 2. Effects on purchases
- 3. Follow-up surveys

Low Compliance by Sales Agents

	(1)	(2)
Dependent Variable:	Agent Reported	Read Script
1(Information Only)	0.481 (0.010)***	0.149 (0.027)***
1(Info and 25 Rebate)	0.491 (0.010)***	0.193 (0.033)***
1(Info and 100 Rebate)	0.460 (0.019)***	0.156 (0.057)***
1(25 Rebate Only)	0.491 (0.006)***	0.214 (0.020)***
1(100 Rebate Only)	0.494 (0.010)***	0.180 (0.033)***
1(Spiff Only)		0.011 (0.013)
1(Spiff and 25 Rebate)		0.036 (0.029)
1(Spiff and 100 Rebate)		0.155 (0.065)**
R ² N	0.39 20,240	0.25 1,742

Allcott and Sweeney

Compliance Rates Variable and Low

Effects on Energy Star Market Share

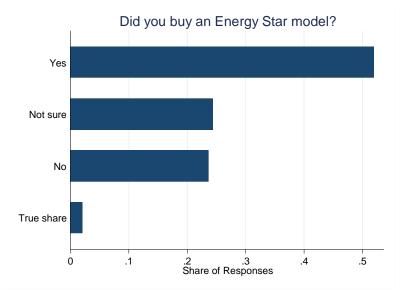
	(1)	(2)	(3)
1(100 Rebate)	0.006 (0.003)**	0.012 (0.005)**	0.037 (0.013)***
1(25 Rebate)	0.001 (0.001)	0.002 (0.003)	0.003 (0.005)
1(Information)	0.000 (0.002)	0.000 (0.004)	0.004 (0.007)
1(Spiff)	-0.002 (0.002)		0.001 (0.007)
1(Spiff and 25 Rebate)	-0.004 (0.002)**		-0.007 (0.005)
1(Spiff and 100 Rebate)	0.040 (0.022)*		0.219 (0.118)*
R^2	0.01	0.01	0.01
Ν	23,347	20,240	23,347
Regression Type:	ITT	Self- Report IV	Scaled ITT

Agents Target Scripts at Likely Purchasers

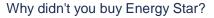
$$Y_{iat} = \xi T_i N_{iat}^s + \kappa T_i (1 - N_{iat}^s) + \phi_i + \mu_a + \epsilon_{iat}$$

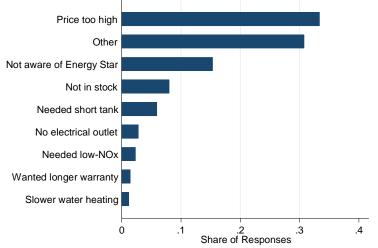
• N_{iat}^s = Agent-reported compliance

• ξ is selection+treatment; κ is purely selection


	(1)	(2)	(3)	(4)
Dependent Variable:	1(Factor)	1(EStar)	1(EStar)	1(EStar)
T x Reported Compliance	-0.014 (0.030)	0.013 (0.002)***	0.038 (0.007)***	0.034 (0.006)***
T x (1 - Reported Compliance)	-0.057 (0.021)***	-0.009 (0.001)***	-0.031 (0.005)***	-0.022 (0.004)***
R^2	0.18	0.02	0.05	0.05
N	404	20,240	5,180	6,123
Dep. Var. Control Mean	.061	.009	.033	.025

Interpretation: Agents are not "shirking." They are "strategic."


Why Is Demand for Energy Star So Low?


- Are consumers still uninformed/unaware after purchase?
- Or are they well-informed but uninterested?
- Use post-purchase survey to test

Consumers Confused about Energy Star

Price and Lack of Awareness Are Barriers

Consumers Do Not Underestimate Energy Star Savings

How r	nuch ma	oney do	you think tl	he natural gas for the water heater will cost each year?
10th	50th	90th	Mean	Yellow Tag
50	200	600	305	Approx 300
		2	2	nk the natural gas would cost each year for an
Ener	0,		eater compa	ared to a similarly-sized non-Energy Star water heater?
10th	50th	90th	Mean	Yellow Tag
0	50	300	129	Approx 30
Implie	d percer	nt saving	s from Ene	rgy Star
mpne	E O LI-	90th	Mean	Yellow Tag
10th	50th	50111		

Conclusion

- Basic question: How effectively can retailers encourage adoption of energy efficient products?
- Approach: RCT with a large nationwide retailer
- Results:
 - Information treatments ineffective at increasing Energy Star sales
 - Agents know that information is ineffective and strategically don't inform
- Suggests that lack of seller-provided information explains little of the low demand for energy efficiency in this context.

Speculation on Policy Implications

Informal speculation: No model or data on these two slides ...

Quotes from sales agent follow-up survey:

- "I would say about 90% of our customers only care about how cheaply can they get away with the purchase of a water heater."
- "Customers that were shopping ahead [i.e. not a sudden unplanned failure] seemed to be making more educated decisions ... they were more inclined to use the Energy Star water heaters as item they wanted their quote for. I feel that whenever there was not such a sense of urgency ... customers were in a position to spend more on a better water heater and also able to wait for it to be ordered since they usually are not in stock."

Speculation on Policy Implications

- ► If you believe there might be a consumer market failure ...
- Simple behavioral/PF model (AMT 2014, Camerer et al. 2003, O'Donoghue and Rabin 2006):
 - Unaware types do not affect aware type's choice set or prices
 - Might be cautious to intervene paternalistically
- Water heaters: Possibly large fixed costs to manufacture and stock a model
 - Energy Star parts cost \approx \$60, not stocked in many locations
 - The existence of unaware types would increase price and reduce availability for aware types.
- Do potential pecuniary externalities provide additional justification for minimum efficiency standards?