# Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors

 ${\sf Stephen\ Holland}^{1,5} \quad {\sf Erin\ Mansur}^{2,5} \quad {\sf Nicholas\ Muller}^{3,5} \quad {\sf Andrew\ Yates}^4$ 

<sup>1</sup>Economics Department, University of North Carolina at Greensboro

<sup>2</sup>Tuck School of Business, Dartmouth College

<sup>3</sup>Economics Department, Middlebury College

<sup>4</sup>Economics Department, University of North Carolina

<sup>5</sup>National Bureau of Economic Research

October 2015

#### Introduction

- Electric vehicles (EVs) growing in importance
  - ▶ 11 models & 130,000 registered cars in July 2014 State Registrations
- Multiple subsidies at time of purchase
  - \$7500 Federal subsidy
  - Additional state subsidies (e.g., Colorado \$6000)
- Possible justifications for subsidies
  - Environmental benefits relative to gasoline cars
  - Reduce dependance on foreign oil
  - Dynamic efficiency
    - Innovation spillovers
    - Learning by doing
    - Network externalities

# Our Study

- We ask: What is the environmental benefit of an electric car?
  - What are the lifetime effects of driving an EV relative to a gasoline car?

#### What is "Greener"? EV vs.









#### What is "Greener"? EV vs. Gasoline Vehicle?







#### What is "Greener"? EV vs. Gasoline Vehicle?







#### What is "Greener"? EV vs. Gasoline Vehicle?







# Our Study

- We ask: What is the environmental benefit of an electric car?
  - ▶ What are the lifetime effects of driving an EV relative to a gasoline car?
- Caveats
  - Not focus on full Life Cycle Analysis (LCA)
  - Focus on today's grid
  - Focus on incremental EV penetration
- Key point: Local factors matter
  - Local heterogeneity in benefits (county or state of use)
  - Global and local air pollution emissions
  - Uniform vs. differentiated regulation
  - Local jurisdictions (pollution export)

# Overview of Methodology

#### We extend and integrate three components:

- Theoretical discrete choice transportation model
  - How do subsidies change what type of vehicle people buy?
- Electricity generation and air pollution
  - How much air pollution results from charging EVs?
- Air pollution integrated assessment
  - What are the health and environmental consequences of driving?

#### Theoretical Framework

#### Optimal policies

- Pigovian taxes on both gasoline  $(t_g)$  & electric  $(t_e)$  miles
- marginal damages per mile for gasoline vehicle  $\delta_g$ ,  $t_g = \delta_g$
- marginal damages per mile for electric vehicle  $\delta_e$ ,  $t_e$  =  $\delta_e$

#### Second-best policies

- Subsidize electric miles by "environmental benefit"
- Subsidy of  $\delta_g \delta_e$  (if electric miles replace gas miles 1:1)
- Subsidy for electric vehicle purchase based on lifetime miles
  - Lifetime of 150,000 miles for each vehicle type
  - $S = (\delta_g \delta_e) \bullet 150,000$

#### **Empirical Methods**

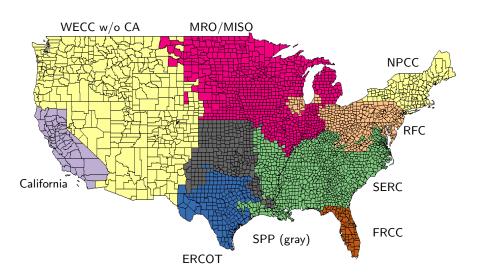
We determine marginal damages per mile: gasoline  $\delta_{\it gi}$  & electricity  $\delta_{\it ei}$ 

- ► Five air pollutants: CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>X</sub>, PM<sub>2.5</sub>, and VOCs
- ▶ All electric cars for sale in 2014 and close substitute gas cars
- Ford Focus makes both a gas model and an electric model





Sales for all EV Types


# Marginal Damages of Driving

- Product of two factors
- Emissions per mile
  - Gas cars
    - Emissions per mile from GREET and EPA
    - Urban vs. rural adjustment
  - Electric cars
    - kWh per mile from EPA
    - Cold-weather adjustment
    - Electricity generation and air pollution emissions model
- Damages from emissions (\$ per gram)
  - Global pollutant (CO<sub>2</sub>)
    - EPA social cost of carbon (\$41/ton)
  - Local pollutants (SO₂, NO<sub>X</sub>, PM₂,5, and VOC)
    - Air pollution integrated assessment model (AP2)

#### Electricity Generation and Air Pollution Emissions

- Model the U.S. electricity grid
- Nine electricity regions (NERC) are the spatial unit for electricity load shocks due to charging electric car
- Load shock in one region may affect plants in other regions
- Plant-level regressions to estimate effects of change in load in NERC region on emissions
- Time of day when charged matters
- Data from EPA (emissions) and Federal Energy Regulatory Commission (load)

# Map of Electricity Load Regions



#### Plant Level Regressions

$$y_{it} = \sum_{h=1}^{24} \sum_{j=1}^{J(i)} \beta_{ijh} HOUR_h LOAD_{jt} + \sum_{h=1}^{24} \sum_{m=1}^{M} \alpha_{ihm} HOUR_h MONTH_m + \varepsilon_{it},$$

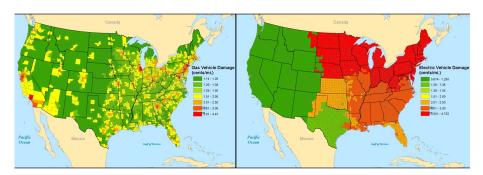
- y<sub>it</sub>: emissions of plant i and time t
- ▶ J(i): number of regions in i's interconnection
- ▶ HOUR<sub>h</sub>: hour of the day h
- ▶  $MONTH_m$ : month of sample where M is the total number of months.
- ▶  $LOAD_{jt}$ : electricity consumed in region j at time t.

Emission factors  $\beta_{ijh}$ : marginal change in emissions at plant i from an increase in electricity usage in region j in hour h.

# Air pollution integrated assessment model

- AP2 model (Muller 2014)
- Maps emissions ⇒ ambient concentrations ⇒ damages
- Tailpipe and smokestacks emissions
  - ▶ CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>X</sub>, PM<sub>2.5</sub>, and VOCs
- Damages
  - Damages from emissions of CO<sub>2</sub>
  - Damages from ambient concentrations of SO<sub>2</sub>, O<sub>3</sub>, and PM<sub>2.5</sub>
- Both full and native damages
- Counties are spatial unit

#### AP2 details


- Chemical and physical processes
  - $PM_{2.5} = f(PM_{2.5}, SO_2, NO_X, VOC)$
  - $SO_2 = f(SO_2)$
  - $O_3 = f(NO_X, VOC)$
- Damages
  - Human health due to  $PM_{2.5}$  and  $O_3$  (mortality, VSL)
  - Crop and timber losses due to O<sub>3</sub>
  - Building and material degradation due to SO<sub>2</sub>
  - Reduced visibility and recreation due to PM<sub>2.5</sub>

# Summary of Results

- Considerable heterogeneity in the environmental benefit of EVs
  - Range from \$3025 in California to -\$4773 in North Dakota
  - On average, -\$742 (VMT weighted)
- Electric cars export pollution much more than gas cars
  - At state level, 90% for EVs versus 18% for gasoline cars
- Welfare effects
  - Taxing miles raises welfare relative to purchase subsidies
  - Differentiated regulation can raise welfare
  - Differentiation especially beneficial for milage taxes

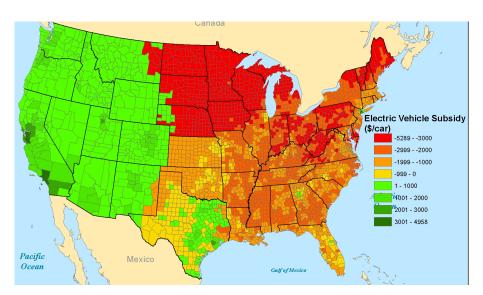
# Considerable Heterogeneity in the Environmental Benefits of Electric Vehicles

# Map of Marginal Damages of Driving



#### Summary Statistics of Driving Damages

|            | Elec | tric Veh | cle Gasoli |      | oline Vehicle |      | Environmental Bene |       | Benefit |
|------------|------|----------|------------|------|---------------|------|--------------------|-------|---------|
| Vehicle    | mean | min      | max        | mean | min           | max  | mean               | min   | max     |
| Ford Focus | 2.50 | 0.67     | 4.72       | 2.00 | 1.13          | 4.47 | -0.49              | -3.53 | 3.31    |


|            | Environmental Benefit |       | Global Benefit |      |       | Local Benefit |       |       |      |
|------------|-----------------------|-------|----------------|------|-------|---------------|-------|-------|------|
| Vehicle    |                       | min   |                |      |       |               |       |       |      |
| Ford Focus | -0.49                 | -3.53 | 3.31           | 0.59 | -0.16 | 1.03          | -1.08 | -3.43 | 2.28 |

Notes: Damages and environmental benefits are in cents per mile for 2014 electric vehicles and equivalent 2014 gasoline vehicles across counties. Damages are from power plant emissions or tailpipe emissions of NO<sub>X</sub>, VOCs, PM<sub>2.5</sub>, SO<sub>2</sub>, and CO<sub>2</sub>. Electric vehicles assume the EPRI charging profile. Damages are weighted across counties by VMT.

EV Damages by Time of Day

Additional Damages Slides

# Map of Second-Best EV Subsidy (150k miles/car)

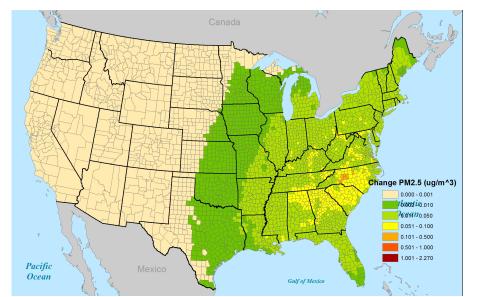


#### Environmental Benefit by Metropolitan Statistical Areas

| Metropolitan      | Benefits | Damage   | e per Mile  | Purchase |
|-------------------|----------|----------|-------------|----------|
| Statistical Area  | per mile | Gasoline | Electricity | Subsidy  |
| Los Angeles, CA   | 3.31     | 3.99     | 0.69        | \$4,958  |
| Oakland, CA       | 2.35     | 3.04     | 0.68        | \$3,531  |
| San Francisco, CA | 2.06     | 2.74     | 0.68        | \$3,086  |
| Phoenix, AZ       | 0.89     | 1.92     | 1.03        | \$1,328  |
| Dallas, TX        | 0.76     | 2.05     | 1.29        | \$1,144  |
| Houston, TX       | 0.76     | 2.16     | 1.40        | \$1,140  |
| New York, NY      | 0.12     | 3.30     | 3.17        | \$184    |
| Tampa, FL         | -0.20    | 2.27     | 2.47        | -\$305   |
| Atlanta, GA       | -0.21    | 2.52     | 2.73        | -\$314   |
| Chicago, IL       | -0.60    | 3.12     | 3.72        | -\$900   |
| Washington, DC    | -0.72    | 2.31     | 3.03        | -\$1,077 |
| Fargo, ND         | -2.93    | 1.69     | 4.61        | -\$4,388 |
| Grand Forks, ND   | -3.00    | 1.66     | 4.66        | -\$4,495 |
| Average           | -0.49    | 2.00     | 2.50        | -\$742   |
| Rural             | -1.46    | 1.30     | 2.77        | -\$2,193 |

Notes: The environmental benefit (cents per mile) is the difference in damages between the 2014 gasoline-powered Ford Focus and the 2014 electric Ford Focus. Environmental benefit is weighted by VMT by county within each MSA. Non-urban includes all counties that are not part of an MSA. The vehicle subsidy assumes vehicle is driven 150,000 miles.

#### Second-Best Uniform Subsidy


- Second-best uniform subsidy is negative (-\$742)
- Considering only CO<sub>2</sub> emissions, subsidy is positive (\$885)
- Electric cars are better for carbon emissions, but worse when we include local pollution

Electric Vehicles Export Local Pollutants
Much More than Gasoline Internal
Combustion Engine (ICE) Vehicles

# Change in PM<sub>2.5</sub>: Drive 1000 ICE Focus in Fulton County



# Change in PM<sub>2.5</sub>: Drive 1000 EV Focus in SERC Region



#### Native Damages (cents/mile) and Export Shares

| Vehicle  | Damages  | mean | med  | std. dev. | min  | max  |
|----------|----------|------|------|-----------|------|------|
| Electric | All      | 2.50 | 2.74 | 1.11      | 0.67 | 4.72 |
|          | Non-GHG  | 1.62 | 1.86 | 0.95      | 0.16 | 3.50 |
|          | State    | 0.15 | 0.16 | 0.07      | 0.04 | 0.33 |
|          | Export % | 91%  | 91%  |           |      | 91%  |
|          | County   | 0.02 | 0.02 | 0.01      | 0.00 | 0.06 |
|          | Export % | 99%  | 99%  |           |      | 98%  |
| Gasoline | All      | 2.00 | 1.91 | 0.60      | 1.13 | 4.47 |
|          | Non-GHG  | 0.54 | 0.37 | 0.53      | 0.01 | 2.92 |
|          | State    | 0.44 | 0.27 | 0.51      | 0.00 | 2.76 |
|          | Export % | 18%  | 27%  |           |      | 5%   |
|          | County   | 0.23 | 0.11 | 0.38      | 0.00 | 2.03 |
|          | Export % | 57%  | 71%  |           |      | 30%  |
|          |          |      |      |           |      |      |

Notes: "All" reports damages from all pollutants at all receptors. "Non-GHG" reports damages from local pollutants (i.e., excluding CO<sub>2</sub>) at all receptors. "State" ("County") reports damages from local pollutants from receptors within the same state (county) as the source. "State Export %" ("County Export %") reports the share of non-GHG damages which occur at receptors outside the state (county).

#### **Native Benefits**

| Vehicle       | Damages | mean  | med   | std. dev. | min   | max  |
|---------------|---------|-------|-------|-----------|-------|------|
| Environmental | All     | -0.49 | -0.81 | 1.34      | -3.53 | 3.31 |
| Benefit       | Non-GHG | -1.08 | -1.44 | 1.14      | -3.43 | 2.28 |
|               | State   | 0.29  | 0.12  | 0.51      | -0.32 | 2.46 |
|               | County  | 0.21  | 0.09  | 0.37      | -0.06 | 2.00 |

▶ In sum, states export 18% of gasoline damages vs. 91% for electric

# "Optimal" State EV Subsidy (Full vs. Native Damages)



- ▶ When you buy an electric car, you generally make the air in *your* state cleaner (33/48 states better off)
- When you buy an electric car, you generally make society worse off due to dirtier air overall (only 12/48 states better off)

#### State EV policies

- Eight states offered purchase subsidies in 2014
  - California (\$2500), Colorado (\$6000), Georgia (\$5000), Illinois (\$4000), Maryland (\$3000), Mass. (\$2500), Texas (\$2500) & Utah (\$1500)
- Other policies such as carpool benefits, parking benefits, reduced electricity prices
- State policies more highly correlated with subsidy based on native damages than subsidy based on full damages

#### Welfare loss of various policies

| Policy Level                           | Subsidy      | Tax<br>g and e | Tax<br>g only |
|----------------------------------------|--------------|----------------|---------------|
| County Specific                        | 1996         | 0              | 192           |
| State Specific                         | 2000         | 90             | 281           |
| Uniform Federal                        | 2024         | 163            | 336           |
| County (native)                        | 2022         | 1158           |               |
| State (native)                         | 2026         | 1234           |               |
| Federal (native)                       | 2028         | 911            |               |
| Actual Uniform Federal<br>Zero Subsidy | 2765<br>2027 |                |               |

*Notes*: Welfare loss in millions \$/year.



Additional Welfare Slides

#### Sensitivity Analysis

- "Carbon cost": social cost of carbon of \$51 or \$31
- "No temperature adjustment": no range degradation at low temperatures
- "Flat charging profile": EV charging occurs equally in all hours (vs. EPRI)
- "Average MPG": average MPG for gasoline vehicles instead of using the city MPG in urban counties and the highway MPG in non-urban counties
- "Double gasoline emissions rates" doubles the local pollutants' emissions rates
- "\$2 Million VSL" assumes the VSL is \$2 million instead of the baseline \$6 million
- "PM dose response" assumes the higher PM<sub>2.5</sub> adult-mortality dose-response from Roman et al. (2008)
- "Future grid & vehicle" assumes
  - all coal-fired power plants are replaced by clean natural gas plants which are dispatched identically, and
  - the gasoline vehicle is a Toyota Prius

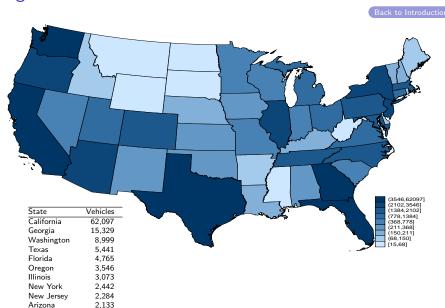
# Sensitivity Analysis: County-level subsidies for purchase

|                    | mean | minimum | maximum |
|--------------------|------|---------|---------|
| Baseline           | -742 | -5295   | 4965    |
| Average MPG        | -945 | -4950   | 4530    |
| No temp adjustment | -525 | -4110   | 4980    |
| Future grid & cars | 960  | -750    | 4215    |

Retiring coal plants results in positive EV benefits in most counties

Additional Sensitivity Slides

#### Interaction with other regulations


- CAFE standards
  - Assume that the current standard binds
  - Electric car sale allows another consumer to purchase a low mpg car instead of a high mpg car
  - Additional cost to society (\$1439 per EV purchase)
- NO<sub>X</sub> and SO<sub>2</sub> permit markets
  - Permit prices are very low right now, reflecting transactions costs
  - If permit markets do not bind, then EV local externalities
  - What if bind?
    - General equilibrium effects like other inputs
    - However permit price may change, causing wealth transfers

#### **Conclusions**

- Large geographic variation in environmental benefits of electric cars
- Local discretion in regulation?
  - Problem of pollution export
  - Federal policy but can it differentiate by location?
- Environmental benefits alone do not justify \$7500 subsidy
- Pigovian taxes! But no, subsidy on purchase
- Unintended consequences. E.g., CAFE

# Appendix Slides

#### Registered Electric Vehicles



◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

# Types of Electric Cars

| Electric            | Registered     | Equivalent Gasoline |
|---------------------|----------------|---------------------|
| Car Model           | Number of Cars | Car Model           |
| Chevy Spark EV      | 1,899          | Chevy Spark         |
| Honda Fit EV        | 1,055          | Honda Fit           |
| Fiat 500e           | 8,555          | Fiat 500            |
| Nissan Leaf         | 69,860         | Toyota Prius        |
| Mitsubishi i-Miev   | 1,721          | Chevy Spark         |
| Smart Fortwo EV     | 4,077          | Smart Fortwo        |
| Ford Focus EV       | 4,436          | Ford Focus          |
| Tesla S (60/85 kWh) | 38,235         | BMW 740/750         |
| Toyota Rav4 EV      | 2,456          | Toyota Rav4         |
| BYD e6              | n/a            | Toyota Rav4         |

Back to Methods

## Mean Damages by Electricity Region (cents per mile)

| Damages in | cents | per | mile |
|------------|-------|-----|------|
|------------|-------|-----|------|

| Region      | EPRI | Flat | Hr 1-4 | Hr 5-8 | Hr 9-12 | Hr 13-16 | Hr 17-20 | Hr 21-24 | VMT<br>(pct) |
|-------------|------|------|--------|--------|---------|----------|----------|----------|--------------|
| California  | 0.69 | 0.75 | 0.65   | 0.78   | 0.78    | 0.84     | 0.82     | 0.64     | 12%          |
| WECC w/o CA | 1.03 | 0.92 | 1.18   | 0.98   | 0.84    | 0.76     | 0.73     | 0.99     | 10%          |
| ERCOT       | 1.28 | 1.21 | 1.50   | 1.41   | 1.10    | 1.07     | 1.05     | 1.16     | 8%           |
| FRCC        | 2.48 | 2.14 | 3.21   | 2.36   | 2.25    | 1.39     | 1.53     | 2.11     | 7%           |
| SERC        | 2.75 | 2.68 | 2.76   | 2.26   | 2.73    | 2.97     | 2.64     | 2.72     | 24%          |
| SPP         | 2.24 | 2.74 | 2.07   | 4.91   | 2.30    | 2.89     | 2.39     | 1.89     | 4%           |
| NPCC        | 3.11 | 2.75 | 4.19   | 3.75   | 1.61    | 2.12     | 2.49     | 2.35     | 9%           |
| RFC         | 3.65 | 3.56 | 3.44   | 3.39   | 3.85    | 3.07     | 3.44     | 4.17     | 22%          |
| MRO         | 4.39 | 3.61 | 5.77   | 4.01   | 3.11    | 2.63     | 2.37     | 3.78     | 5%           |
|             |      |      |        |        |         |          |          |          |              |
| Total       | 2.50 | 2.38 | 2.69   | 2.49   | 2.30    | 2.18     | 2.18     | 2.44     | 100%         |

Notes: 2014 Ford Focus electric vehicle for different charging profiles Back to Damages Slides

#### **Summary Statistics**

|                   | Elec | Electric Vehicle |      |      | Gasoline Vehicle |      |       | Environmental Benefit |      |  |
|-------------------|------|------------------|------|------|------------------|------|-------|-----------------------|------|--|
| Vehicle           | mean | min              | max  | mean | min              | max  | mean  | min                   | max  |  |
| Chevy Spark       | 2.20 | 0.59             | 4.17 | 1.81 | 1.05             | 4.42 | -0.39 | -3.05                 | 3.20 |  |
| Honda Fit         | 2.22 | 0.60             | 4.20 | 2.07 | 1.24             | 4.96 | -0.15 | -2.88                 | 3.73 |  |
| Fiat 500e         | 2.26 | 0.61             | 4.27 | 1.87 | 1.03             | 4.75 | -0.39 | -3.17                 | 3.45 |  |
| Nissan Leaf       | 2.30 | 0.62             | 4.35 | 1.31 | 0.81             | 3.60 | -1.00 | -3.44                 | 2.29 |  |
| Mitsubishi i-Miev | 2.34 | 0.63             | 4.41 | 1.81 | 1.05             | 4.42 | -0.53 | -3.30                 | 3.17 |  |
| Smart fortwo      | 2.45 | 0.66             | 4.63 | 1.78 | 1.08             | 4.61 | -0.67 | -3.48                 | 3.24 |  |
| Ford Focus        | 2.50 | 0.67             | 4.72 | 2.00 | 1.13             | 4.47 | -0.49 | -3.53                 | 3.31 |  |
| Tesla S (60 kWh)  | 2.72 | 0.73             | 5.15 | 2.64 | 1.41             | 5.68 | -0.09 | -3.65                 | 4.48 |  |
| Tesla S (85 kWh)  | 2.96 | 0.80             | 5.59 | 2.89 | 1.63             | 5.96 | -0.07 | -3.87                 | 4.77 |  |
| Toyota Rav4       | 3.45 | 0.93             | 6.52 | 2.25 | 1.32             | 5.18 | -1.21 | -5.11                 | 3.66 |  |
| BYD e6            | 4.20 | 1.13             | 7.94 | 2.25 | 1.32             | 5.18 | -1.96 | -6.52                 | 3.45 |  |

Notes: Damages and environmental benefits are in cents per mile for 2014 electric vehicles and equivalent 2014 gasoline vehicles across counties. Damages are from power plant emissions or tailpipe emissions of NO<sub>X</sub>, VOCs, PM<sub>2.5</sub>, SO<sub>2</sub>, and CO<sub>2</sub>. Electric vehicles assume the EPRI charging profile. Damages are weighted across counties by VMT.

# Decomposition of Benefits

|                   | Environmental Benefit |       |      | (  | Global Env. Benefit |       |      |  | Local Env. Benefit |       |      |
|-------------------|-----------------------|-------|------|----|---------------------|-------|------|--|--------------------|-------|------|
| Vehicle           | mean                  | min   | max  | m  | ean                 | min   | max  |  | mean               | min   | max  |
| Chevy Spark       | -0.39                 | -3.05 | 3.20 | 0  | .47                 | -0.09 | 0.84 |  | -0.87              | -3.01 | 2.37 |
| Honda Fit         | -0.15                 | -2.88 | 3.73 | 0  | .66                 | 0.09  | 1.03 |  | -0.81              | -3.02 | 2.71 |
| Fiat 500e         | -0.39                 | -3.17 | 3.45 | 0  | .45                 | -0.15 | 0.83 |  | -0.84              | -3.08 | 2.63 |
| Nissan Leaf       | -1.00                 | -3.44 | 2.29 | -0 | 0.01                | -0.36 | 0.35 |  | -0.98              | -3.16 | 1.99 |
| Mitsubishi i-Miev | -0.53                 | -3.30 | 3.17 | 0  | .42                 | -0.16 | 0.82 |  | -0.95              | -3.20 | 2.36 |
| Smart fortwo      | -0.67                 | -3.48 | 3.24 | 0  | .30                 | -0.19 | 0.68 |  | -0.97              | -3.34 | 2.57 |
| Ford Focus        | -0.49                 | -3.53 | 3.31 | 0  | .59                 | -0.16 | 1.03 |  | -1.08              | -3.43 | 2.28 |
| Tesla S (60 kWh)  | -0.09                 | -3.65 | 4.48 | 1  | .02                 | 0.00  | 1.56 |  | -1.11              | -3.72 | 2.93 |
| Tesla S (85 kWh)  | -0.07                 | -3.87 | 4.77 | 1  | .18                 | 0.10  | 1.76 |  | -1.25              | -4.04 | 3.02 |
| Toyota Rav4       | -1.21                 | -5.11 | 3.66 | 0  | .39                 | -0.46 | 0.96 |  | -1.59              | -4.73 | 2.71 |
| BYD e6            | -1.96                 | -6.52 | 3.45 | 0  | .12                 | -0.85 | 0.81 |  | -2.08              | -5.78 | 2.66 |

Back to Damages Slides

| Environmental Benefit by State |                     |       |                        |                        |                     |  |  |  |  |  |
|--------------------------------|---------------------|-------|------------------------|------------------------|---------------------|--|--|--|--|--|
|                                | Environmenta        | •     | Damage                 | Damage                 |                     |  |  |  |  |  |
| State                          | benefit per<br>mile | VMT   | per mile<br>(gasoline) | per mile<br>(electric) | Purchase<br>Subsidy |  |  |  |  |  |
| State                          | Tille               | (pct) | (gasonne)              | (electric)             | Subsidy             |  |  |  |  |  |
| <u>Highest Benefit</u>         |                     |       |                        |                        |                     |  |  |  |  |  |
| <u>States</u>                  |                     |       |                        |                        |                     |  |  |  |  |  |
| California                     | 2.02                | 12%   | 2.71                   | 0.69                   | \$3,025             |  |  |  |  |  |
| Utah                           | 0.88                | 1%    | 1.92                   | 1.04                   | \$1,320             |  |  |  |  |  |
| Colorado                       | 0.75                | 2%    | 1.78                   | 1.03                   | \$1,123             |  |  |  |  |  |
| Washington                     | 0.74                | 1%    | 1.76                   | 1.02                   | \$1,108             |  |  |  |  |  |
| Arizona                        | 0.73                | 2%    | 1.75                   | 1.02                   | \$1,093             |  |  |  |  |  |
| Lowest Benefit                 |                     |       |                        |                        |                     |  |  |  |  |  |
| <u>States</u>                  |                     |       |                        |                        |                     |  |  |  |  |  |
| South Dakota                   | -2.52               | 0%    | 1.40                   | 3.92                   | -\$3,787            |  |  |  |  |  |
| Minnesota                      | -2.57               | 1%    | 1.57                   | 4.14                   | -\$3,856            |  |  |  |  |  |
| Nebraska                       | -2.63               | 2%    | 1.85                   | 4.48                   | -\$3,951            |  |  |  |  |  |
| lowa                           | -2.75               | 1%    | 1.49                   | 4.24                   | -\$4,118            |  |  |  |  |  |
| North Dakota                   | -3.18               | 0%    | 1.39                   | 4.58                   | -\$4,773            |  |  |  |  |  |

# Environmental Benefit by State (cont.)

| State          | Environmental<br>benefit per<br>mile | VMT<br>(pct) | Damage<br>per mile<br>(gasoline) | Damage<br>per mile<br>(electric) | Purchase<br>Subsidy |
|----------------|--------------------------------------|--------------|----------------------------------|----------------------------------|---------------------|
| Other High VMT |                                      |              |                                  |                                  |                     |
| <u>States</u>  |                                      |              |                                  |                                  |                     |
| Texas          | 0.52                                 | 9%           | 1.90                             | 1.38                             | \$784               |
| Florida        | -0.55                                | 7%           | 1.94                             | 2.49                             | -\$829              |
| Georgia        | -0.64                                | 4%           | 2.10                             | 2.74                             | -\$955              |
| New York       | -0.75                                | 5%           | 2.35                             | 3.10                             | -\$1,122            |
| New Jersey     | -0.91                                | 3%           | 2.70                             | 3.61                             | -\$1,367            |
| Virginia       | -1.02                                | 4%           | 1.87                             | 2.89                             | -\$1,532            |
| Ohio           | -1.62                                | 5%           | 2.02                             | 3.65                             | -\$2,437            |
| Pennsylvania   | -1.65                                | 3%           | 2.00                             | 3.64                             | -\$2,472            |
| Indiana        | -1.70                                | 3%           | 1.96                             | 3.65                             | -\$2,543            |
| Michigan       | -1.81                                | 3%           | 1.93                             | 3.75                             | -\$2,720            |

### Calibration for Welfare Analysis

- Calibrate the theory model
- ▶ Price of gas miles (\$0.11), price of electric miles (\$0.04)
- ▶ Price of gas car (\$35,170), price of electric car (\$16,810)
- Constant elasticity f and h (elasticity for miles -0.5)
- Percent of sales due to subsidy (50%, Li et al. 2015)
- Determine H and  $\mu$

Back to Welfare

#### Deadweight Losses of Differentiated VMT Taxes

|                  | Gas and Electric Tax BAU EV Share |      |      |     | as Tax Or |      |      | Electric Tax Only BAU EV Share |      |  |
|------------------|-----------------------------------|------|------|-----|-----------|------|------|--------------------------------|------|--|
|                  | 1%                                | 5%   | 10%  | 1%  | 5%        | 10%  | 1%   | 5%                             | 10%  |  |
| County policies  | 0                                 | 0    | 0    | 192 | 863       | 1543 | 1958 | 1994                           | 2042 |  |
| State policies   | 90                                | 102  | 118  | 281 | 962       | 1688 | 1960 | 2005                           | 2064 |  |
| Federal policy   | 163                               | 273  | 415  | 336 | 1004      | 1830 | 1983 | 2121                           | 2303 |  |
| County (Native)  | 1158                              | 1445 | 1808 |     |           |      |      |                                |      |  |
| State (Native)   | 1234                              | 1531 | 1906 |     |           |      |      |                                |      |  |
| Federal (Native) | 911                               | 1034 | 1194 |     |           |      |      |                                |      |  |

Notes: Deadweight loss in millions of dollars per year is based on 15 million annual vehicle sales normalized to the emissions profile of the Ford Focus. The BAU EV Share is the proportion of electric vehicles sold if there were no subsidy. This share is determined by the assumed value for  $\mu$  (10735.3, 16753.7, 22451.1) which is proportional to the standard deviation of the unobserved relative preference shock. Federal taxes in the joint tax case are 2.0 cents per mile on gasoline miles and 2.5 cents per mile on electric miles.

# Deadweight Losses of Differentiated Electric Vehicle Purchase Subsidies

|                                                  | <u>B</u> / | AU EV Sha | <u>ire</u> |
|--------------------------------------------------|------------|-----------|------------|
|                                                  | 1%         | 5%        | 10%        |
| County policies                                  | 1996       | 2182      | 2411       |
| State policies                                   | 2000       | 2205      | 2458       |
| Federal policy (-\$742 subsidy)                  | 2024       | 2324      | 2703       |
| County policies (native damages)                 | 2022       | 2315      | 2686       |
| State policies (native damages)                  | 2026       | 2333      | 2723       |
| Federal policy (native damages, -\$1553 subsidy) | 2028       | 2344      | 2744       |
| Current Federal Policy (\$7500 subsidy)          | 2765       | 6009      | 10015      |
| BAU Federal Policy (Zero subsidy)                | 2027       | 2343      | 2742       |

Back to Welfare

### Sensitivity Analysis: Damages

|                                 | Elec | tric Veh | icle | Gaso | oline Vel | hicle | Enviro | Environmental Benefit |      |  |
|---------------------------------|------|----------|------|------|-----------|-------|--------|-----------------------|------|--|
|                                 | mean | min      | max  | mean | min       | max   | mean   | min                   | max  |  |
| Baseline                        | 2.50 | 0.67     | 4.72 | 2.00 | 1.13      | 4.47  | -0.49  | -3.53                 | 3.31 |  |
| Carbon cost                     |      |          |      |      |           |       |        |                       |      |  |
| SCC=\$51                        | 2.71 | 0.80     | 5.02 | 2.36 | 1.41      | 4.84  | -0.35  | -3.55                 | 3.56 |  |
| SCC=\$31                        | 2.28 | 0.55     | 4.42 | 1.65 | 0.86      | 4.09  | -0.64  | -3.50                 | 3.06 |  |
| No temperature adjustment       | 2.35 | 0.67     | 3.90 | 2.00 | 1.13      | 4.47  | -0.35  | -2.74                 | 3.32 |  |
| Flat charging<br>profile        | 2.38 | 0.74     | 3.88 | 2.00 | 1.13      | 4.47  | -0.38  | -2.69                 | 3.24 |  |
| Average MPG                     | 2.50 | 0.67     | 4.72 | 1.87 | 1.36      | 4.23  | -0.63  | -3.30                 | 3.02 |  |
| Double gasoline emissions rates | 2.50 | 0.67     | 4.72 | 2.54 | 1.15      | 7.38  | 0.04   | -3.48                 | 5.75 |  |
| \$2 Million VSL                 | 1.57 | 0.71     | 2.64 | 1.68 | 1.13      | 2.69  | 0.12   | -1.49                 | 1.78 |  |
| PM dose<br>response             | 3.59 | 1.25     | 6.89 | 2.31 | 1.14      | 6.10  | -1.28  | -5.65                 | 4.05 |  |
| Future grid & vehicle           | 0.66 | 0.37     | 1.39 | 1.31 | 0.81      | 3.60  | 0.64   | -0.50                 | 2.81 |  |

Notes: Damages in cents per mile for 2014 electric and gasoline Ford Focus.