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Section outline

Why nonparametrics?

Not always just interested in the mean of a (conditional)
distribution.

® sometimes just interested in the distribution

® sometimes this is the first stage and we want to integrate

In this section, we are interested in estimating the density f(z)
under minimal assumptions.
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Let's start with the histogram

One of the more successful and popular uses of nonparametric

methods is estimating the density or distribution function f(z)
or F(x).

N
1 1$0—h<$l<$0+h)
fHISTxO N; 2%

® Divide the dataset into bins, count up fraction of
observations in each bins.

® 2h is the length of a bin.
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Kernel Estimation

Let's rewrite the histogram estimator

fHIST 330 Nh Z < >

Where 2z = £i%0 and K (z) = 1 - 1(|2| < 1)

We can think of more general forms of K(z;h).
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e for each observation, there is probability mass 1 to spread
around

KDE
Bandwidth

e use the function K(-) and smoothing parameter h to
choose how to allocate this mass

e then, for any given xg, sum over these functions that
spread out mass, and normalize by dividing by N

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap
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Non- Smooth Kernels

parametrics

Murry &

Sweeney We call K(-) a Kernel function and h the bandwidth. We
usually assume

KDE

Bandwidth ® K(z) is symmetric about 0 and continuous.

® [K(z)dz=1, [2K(z)dz =0, [|K(2)|dz < c0.

@ Either (a) K(z) = 0if |z] > 2o for some z; or
(b) |2|K(z) — 0 as |z| — oo.

® [ 25(2)dz = K where & is a constant.

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap
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Non- Smooth Kernels

parametrics

Murry &

Sweeney We call K(-) a Kernel function and h the bandwidth. We
usually assume

KDE

Bandwidth ® K(z) is symmetric about 0 and continuous.

® [K(z)dz=1, [2K(z)dz =0, [|K(2)|dz < c0.

@ Either (a) K(z) = 0if |z] > 2o for some z; or
(b) |2|K(z) — 0 as |z| — oo.

® [ 25(2)dz = K where & is a constant.

k-NN
MV Kernels
Local linear

Ex msT Usually we choose a smooth, symmetric K. But a common
: nonsmooth choice: K(z) = (|z| < 1/2) gives the histogram
estimate.

o, 7/121



Non-
parametrics

Murry &
Sweeney

Density

Estimation
KDE
Bandwidth

Cross-
Validation

Example:
Auctions

Non-
parametric
Regression
k-NN

MV Kernels
Local linear
Ex: MST

Inference

Bootstrap

Basis
Expansions

Decision
Trees

Semi-
parametrics

Covert &
Sweeney

Some Common Kernels

Table 9.1. Kernel Functions: Commonly Used Examples®

Kernel Kernel Function K(z) o
Uniform (or box or rectangular) % x 1(]z] < 1) 1.3510
Triangular (or triangle) (I —lz]) x 1(jz| < 1) -
Epanechnikov (or quadratic) ?—1(1 — x|zl <1 1.7188
Quartic (or biweight) 2A -2 x 1zl < 1) 2.0362
Triweight ::—g(l - 2P x 1zl < 1) 2.3122
Tricubic Ba—1zPy x 1zl < 1) -
Gaussian (or normal) (2m )2 exp(—z%/2) 0.7764
Fourth-order Gaussian 13 — 2wy exp(—2%/2) -
Fourth-order quartic B@E-102+7z) x 1zl < 1) -

“ The constant § is defined in (9.11) and is used to obtain Silverman’s plug-in estimate given in (9.13),
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Kernel Comparison

~———  Epanechnikov
© | ———  Tri-cube
© ——— Gaussian
N 1
s <« |
< o
<
e |
=] T T T T T T T

FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

[ See Old Faithful example in notebook]
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Mean and Variance of f ()

Assume that the derivative of f(z) exists and is bounded, and
JzK(2)dz=0

Then the estimator has bias
R 1 2 el 2
b(o) = E | f(w0)] = F(a0) = 5h2f"(w0) | 22K (2)da
The variance of the estimator is

v [Fen)] = st [ K2 ol )

So, unsurprisingly, the bias is increasing in h, and the variance
is decreasing in h.

Derivation of these here.
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How to Choose h

We want both bias and variance to be as small as possible,
as usual.

In parametric estimation, it is not a problem: they both go
to zero as sample size increases.

In nonparametric estimation reducing h reduces bias, but
increases variance; how are we to make his trade off?

Note that how we set h is going to be much more
important than the choice of K(+)
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Mean Integrated Square Error

e Start with the local performance at x
. . 2
MSE [fe0)] = B | (7o) - 5(an))’]

¢ Calculate the integrated (as opposed to expected) squared
error, where we use MSE equals variance plus squared bias

/(f(af)— a: dx— /blas —i—var(f( ))dx

¢ Simple approximate expression (symmetric order 2 kernels):
(bias)? + variance = Ah* + B/nh

with A = [ (f"(z))* (f u?K)® /4 and B = f(z) [ K2
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’ e The AMISE is

Ah* 4+ B/nh

B ® Minimize by taking the FOC
. B\
n o\ 4An
e bias and standard error are both in n=2/>

il * and the AMISE is n=*/>—not 1/n as it is in parametric
Ex: MsT models.
S ® But: A and B both depend on K (known) and f(y)

(unknown), and especially “wiggliness” [(f”)? (unknown,
not easily estimated). Where do we go from here?

Covert & 13 /121
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Optimal bandwidth

Can be shown that the optimal bandwidth is

—0.2
hx =6 < / f”(xo)2dx0> N—02

where § depends on the kernel used (Silverman 1986) [these d's

are given in the kernel table]

Note the "optimal" kernel is Epanechnikov, although the
difference is small.
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Non- Silverman's Rule of Thumb
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® If f is normal with variance o (may not be a very
appropriate benchmark!), the optimal bandwidth is
Bandwidth —1 5
h = 1.060n""
® |n practice, typically use Silverman’s plug-in estimate:
h% =0.9 % min(s, 1Q/1.34) x n~ /5
B where 1Q=interquartile distance
Local linear
Ex MsT ® |nvestigate changing it by a reasonable multiple.

Bootstrap
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Non- Silverman's Rule of Thumb
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® If f is normal with variance o (may not be a very
appropriate benchmark!), the optimal bandwidth is
Bandwidth h; _ 1.060'7171/5
® |n practice, typically use Silverman’s plug-in estimate:
h% =0.9 % min(s, 1Q/1.34) x n~ /5
e where 1Q=interquartile distance
Local linear
Ex MsT ® |nvestigate changing it by a reasonable multiple.
Bostatran This tends to work pretty well. But can we do better?

Covert & 15 /121



Non- Why not search for optimal h in our data?
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e Know we want to minimize MISE.
® One option is to find the h that minimizes it in sample

o ® |oop through increments of h
® Calculate MISE

Cross-
Validation e Example: Old Faithful R data
® Waiting time between eruptions and the duration of the
eruption for the Old Faithful geyser in Yellowstone
National Park, Wyoming, USA.
e ® See R code in this folder.

Local linear
Ex: MST

Bootstrap
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Non- Cross-validation

parametrics
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e ® General concept in the whole of nonparametrics: choose h
to minimize a criterion CV(h) that approximates
et R
AMISE®) = [ B(f,(2) - §()da,
Validation
e Usually programmed in metrics software. If you can do it,
do it on a subsample, and rescale.
e e CV tries to measure what the expected out of sample
MV Kernels (OOS or EPE) prediction error of a new never seen before
S dataset.
® The main consideration is to prevent overfitting.

Bootstrap

® |n sample fit is always going to be maximized by the most
complicated model.

® QOOS fit might be a different story.

® ie 1-NN might do really well in-sample, but with a new
sample might perform badly.

Covert & 17 /121



Non- Sample Splitting/Holdout Method and CV

parametrics

Murry &
Sweene . . . . .
¢ Cross Validation is actually a more complicated version of
sample splitting that is one of the organizing principles in
KoE machine learning literature.
Bandwidth
Cross Training Set This is where you estimate parameter values.
Validation Set This is where you choose a model- a bandwidth
h or tuning parameter \ by computing the error.
Test Set You are only allowed to look at this after you have
ke chosen a model. Only Test Once: compute the
MV Kernels .
Local linear error again on fresh data.

e Conventional approach is to allocate 50-80% to training
and 10-20% to Validation and Test.

® Sometimes we don't have enough data to do this reliably.

Bootstrap

Covert & 18 /121
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KDE

Bandwidth

Cross-

Validation 7 22 1 ¢l
FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is

k-NN fit on the training set, and its performance is evaluated on the validation set.

MV Kernels

Local linear

Ex: MST

Bootstrap

Covert &

Sweeney 19/121
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Challenge with Sample Splitting

8
1
28
1

26

2
L
-

Mean Squared Error
Mean Squared Error

Degree of Polynomial Degree of Polynomial

FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from this approach.
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Non- k-fold Cross Validation

parametrics

Murry &
e ® Break the dataset into k equally sized “folds” (at random).
e Withhold 7 = 1 fold
o * Estimate the model parameters (=% on the remaining
Crose. k — 1 folds A
Validation ® Predict =" using §~" estimates for the ith fold
(withheld data).
* Compute MSE; = % . (y](-_i) - g](."’))?.
® Repeat fori=1,...,k.
P | e Construct mhcv = %Zl MSE;
Local linear
Covert & 21/121
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123 n
KDE
Bandwidth
Cross- 11765 47
Validation
11765 47
11765 47
11765 47
11765 47
k-NN
MV Kernels
(el s FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
Ex: MST randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
Bootstrap blue). The test error is estimated by averaging the five resulting MSE estimates.
Covert & 22/121

Sweeney



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

Cross-
Validation

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap

Leave One Out Cross Validation (LOOCV)

Same as k-fold but with &k = N.

e Withhold a single observation ¢

® Estimate é(_i).

e Predict §; using 0(—9 estimates

e Compute MSE; = % Z](yz - @i(é(_i)))2-

Note: this requires estimating the model N times which can be

costly.
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LOOCV vs k-fold CV

Loocv 10-fold CV
@ w
g €1 g g+
w w
o &9 o &
o o
S 8§ S 8§
o =3
[ @ o
5 5
§ e e e e e—e—" g
o i o i
= =
T T T T T T T T T T
2 4 6 8 10 2 4 8 8 10
Degree of Polynomial Degree of Polynomial

FIGURE 5.4. Cross-validation was used on the Auto data set in order to es-
timate the test error that results from predicting mpg using polynomial functions
of horsepower. Left: The LOOCYV error curve. Right: 10-fold C'V was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different CV error curves.
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Cross Validation

® Main advantage of cross validation is that we use all of the

data in both estimation and in validation.

® For our purposes validation is mostly about choosing the

right bandwidth or tuning parameter.

® \We have much lower variance in our estimate of the OOS

mean squared error.
® Hopefully our bandwidth choice doesn't depend on
randomness of splitting sample.
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Test Data

In Statistics/Machine learning there is a tradition to
withhold 10% of the data as Test Data.

This is completely new data that was not used in the CV

procedure.

The idea is to report the results using this test data
because it most accurately simulates true OOS
performance.

We don't do much of this in economics.
(Should we do more?)
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Non- Extensions (if time)

parametrics
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Sweeney Local Bandwidths
If you only care about f(y) at some given point, then
et 2
A=rw? ([ k) and 5= 1) [ K2
Validation
So in a low-density region, worry about variance and take h
larger. In a curvy region, worry about bias and take h small.
k-NN

Local linear
Ex: MST

Bootstrap
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Extensions (if time)

Local Bandwidths

If you only care about f(y) at some given point, then
2
A= f"(y)? </u2K> /4 and B = f(y)/KQ.

So in a low-density region, worry about variance and take h
larger. In a curvy region, worry about bias and take h small.

Higher-Order Kernels

® K of order r iff [ 27K (z)dx =0 for j <r and
Ja"K(z)dx #0. Try r > 27

® The beauty of it: bias in A" if f is at least C"...so AMISE
can be reduced to n="/(2r+1) almost \/n-consistent if r is
large.

e But gives wiggly (and sometimes negative) estimates —

leave them to theorists.
27 /121
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~

fn(

Back to the CDF

Since now we have estimated the density with

1 & T —x;
= K[
z) nh; ho )
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Back to the CDF

Since now we have estimated the density with

a natural idea is to integrate; let K(z) = [*_ K(t)dt, try

Fo(z) = :LZZ;K (95;1

as a reasonable estimator of the cdf in z.

T

T

)
)

28 /121



Non- Back to the CDF cont...

parametrics
Murry &

Sweeney

Reasonable estimator of the cdf in z7

KDE

N 1 <& xr — T
Bandwidth Fn(flf) — g Z KC ( - >
i=1

Cross-
Validation

Very reasonable indeed:

e when n — 0o and h goes to zero (at rate n=1/3. ) it is

o consistent at rate y/n
MV Kernels
Local linear ® it is nicely smooth

Ex: MST

® by construction it accords well with the density estimator

Bootstrap

® .. it is a much better choice than the empirical cdf.

Sweemey 29 /121
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Example application: Auctions

Why auctions?

Great introduction to structural approach. Arguably the
most successful application.

Auctions are an example of a game with assymetric
information: participants know the primitives of the game,
but do not know their rivals exact valuations.

By imposing rationality/ profit maximization, we can
recover the distribution of values.

Can then run counterfatuals
Example: Asker (AER 2008) - stamp cartel

For more detail, check out Chris Conlon's slides in this folder, or
John Asker's PhD lecture notes.
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Setup

Let's consider the first price sealed bid (FPSB) auction

e bidders have private information (or type) scalar rv X;
with realization z;

e signals are informative: dE[U|z]|/dxz > 0

e given their signal, they make a bid b;

e if its the highest bid, recieve utility [U|z;, x—;] — b;

® ¢lse get 0

® note that if we assume values are independent, we get
E[U|x;, z—;] = E[U|z;]

This introduces a tradeoff in first price auctions: Increasing the
bid increases the probability of winning; but reduces your net
utility from the object.
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How to bid?

Denote the equilibrium bid as B;, with realizations b;

Perfect Bayes Nash equilibrium:

maxy, (E [U;| X; = x;] — b, mazjen_,Bj < [3)

Pr (ma:z:jeN_iBj § l~)|Xl = ZEZ>

See Athey and Haile or Krishna for an accessible derivation.
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Can find bid as a function of primitives

9, B; (bilbi; N)

v(zi,x;; N) =b; +

where Gy, g, and gy, B, are the CDF and PDF of the max
bids given b; and N

we are typically interested in the LHS
RHS is stuff we can observe or compute
nice linear structure makes this easy to work with

Guerre, Perrigne and Vuong (2000): can leverage
assumption of equilibrium best response and invertibility of
b to recover v
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Estimation strategy |

[Assumption: FPSB with symmetric IPV]
@ Leverage independence assumption:
Gy B, (milbis N) = Gy
= Pr(max;ziB; < m;n)
® Value equation becomes
Gp (bn)
(n—1)gp (bln)

where G and gp are now the marginal distribution of
equilibrium bids and the densities in n bidder auctions

=b+

34/121



Non- Estimation strategy |l

parametrics

Murry & . H
Sweeney © can estimate GG and g using kernels
@ now have .
A Gp (bn)
KDE u="0 + T N~ 1\
Bandwidth (n — 1)93 (b|n)
@ finally, can recover the distribution of values with another
Bxample: kernel
uctions
1 1 & T
k-NN r 7 — Wgt
= Fu) = e Sy e (M)
Local linear Tnhf T=1 nt i=1 hf
Covert & 35/121



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

Example:
Auctions

k-NN
MV Kernels
Local linear

Ex: MST

Bootstrap

Covert &
Sweeney

Algoritm

for each b, estimate Gg(by|n) and §g(bo|n) using all the

data

infer 4 (bo)

estimatef

plot bids, adjust bandwidth etc

run counterfactuals
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Non- Nonparametric Regression
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e Often we're interested in F [Y;|X; = ]
e |f X is discrete, can just average for each value
st ® But often times we want to smooth across values of X
® Each bin could have small n. [Likely if X has many
dimensions]
® X could be continuous
e ® One option is to pick a parametric functional form
Regression y = f(z). But often hard to think about how sensible
k-NN
MV Kernele these assumptions are (and what they impose on the
Local linear .
e wsT economics of the problem)
o ® An alternative is to extend the concepts of nonparametric
density estimation
Covert &

Sweeney 37/121
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A Fake Data Example

HTF 2.3 includes an example classification problem.

An (unknown) model maps a pair of inputs X; and X3 into
classes of either BLUE or ORANGE.

Training data: Imagine we have 100 points from each class.
OLS solution

Y = ORANGE ifY+*=2T3 >0.5
Y= BLUEifY+x=2T3 <05
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Linear Probability Model

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by ITB = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is

classified as BLUE. 39/121
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Is this the best we can do?

Consider two DGPs:

@ Draws from bivariate normal distribution with uncorrelated
components but different means (2 overlapping types)

® Mixture of 10 low variance (nearly point mass) normal
distributions where the individual means were drawn from
another normal distribution. (10 nearly distinct types).

In the case of 1, OLS is the best we can do.

In the case of 2, OLS will perform very poorly.
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® |ots of potential alternatives to our decision rule.

e A simple idea is to hold a majority vote of k neighboring
::iwidth points

. 1
Y 2 Z Yi
zT_iENg(z)

® How many parameters does this model have: None? One?

k-NN | k?
S ® Technically it has something like N/k.

® As N — oo this means we have an infinite number of
parameters! (This is a defining characteristic of
non-parametrics).

Bootstrap

Covert & 41 / 121
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15 Nearest Neighbor

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majorily vote amongst the 15-nearest neighbors.

42 /121



Non-
parametrics

Murry &
Sweeney

Density

Estimation
KDE
Bandwidth

Cross-
Validation

Example:
Auctions

Non-
parametric
Regression
k-NN

MV Kernels
Local linear

Ex: MST

Inference

Bootstrap

Basis
Expansions

Decision
Trees

Semi-
parametrics

Covert &
Sweeney

Extreme: 1 Nearest Neighbor

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1), and
then predicted by 1-nearest-neighbor classification.
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Non- Bias Variance Decomposition

parametrics
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We can decompose any estimator into two components

B @) = (Bl - @) + B [(f@) - Bli@))
MSE

Bias? Variance

® |n general we face a tradeoff between bias and variance.

® In k-NN as k gets large we reduce the variance (each point

k-NN

e has less influence) but we increase the bias since we start

ocal linear . . . .

e incorporating far away and potentially irrelevant
information.

Bootstrap

® In OLS we minimize the variance among unbiased
estimators assuming that the true f is linear and using the
entire dataset.

Covert & 44/ 121
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Non- Big Data

parametrics

Murry &
Sweeney
® |t used to be that if you had N = 50 observations then you
had a lot of data.
o ® Those were the days of finite-sample adjusted t-statistics.

® Now we frequently have 1 million observations or more,
why can't we use k-NN type methods everywhere?

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap
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Non- Curse of Dimensionality

parametrics
Murry &
Swieeney Take a unit hypercube in dimension p and we put another

hypercube within it that captures a fraction of the observations

e r within the cube

® Since it corresponds to a fraction of the unit volume, r
each edge will be e, (r) = r!/7.

® ¢19(0.01) = 0.63 and e1p(0.1) = 0.80, so we need almost
80% of the data to cover 10% of the sample!

o e |If we choose a smaller 7 (include less in our average) we
MV Kernels

Local linear increase variance quite a bit without really reducing the
o required interval length substantially.

Bootstrap
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Curse of Dimensionality

Init Cub. e
Unit Cube - p=10
\ ;
(=] p=2
1
8 g p=1
c
S
[2]
a T
<)
o
<)
0
o
1 [S)
0.6

Neighborhood
Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.
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Curse of Dimensionality

Don't worry, it only gets worse:

d(p,N) = (1 B <;>1/N> 1/p

d(p, N) is the distance from the origin to the closest point.

N =500 and p = 10 means d = 0.52 or that the closest
point is closer to the boundary than the origin!

Why is this a problem?

In some dimension nearly every point is the closest point to
the boundary — when we average over nearest neighbors we
are extrapolating not interpolating.
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Back to Bias - Variance

What minimizes MSE?

f(zi) = E[Yi|X;]

e Seems simple enough (but we are back where we started).

® How do we compute the expectation 7

® k-NN tries to use local information to estimate conditio
mean

nal

® OLS uses entire dataset and adds structure y = xf3 to the

problem.

e A natural middleground point is to use a smoother that
weights "close" observations more than "far" ones.
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Covert &
Sweeney

Common weights

Consider the following local weighted average estimator:
N
(o) =D wio pyi
i=1

where Wi0,n = w(l'i,l‘o, h) and Zz Wi0,h = 1.
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Common weights

Consider the following local weighted average estimator:

N
) = Z Wi0,nYi
i=1

where wjg ,, = w(x;, xo, h) and Y, wiop = 1.

Rearranging, can see that OLS uses the following weights

mors(zo) Z{ + xozj(xi(_ )2 )}yz

CT note that these weights can actually increase with the
distance between xg and z;! (for example if x; > z¢9 > 7 )
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k-NN is simply a running average

. 1
Mk (w0) = 2 (Yie(k-1)/2 - + Yir (k-1)/2

Can immediately see that this will not be great at the end
points.

For the smallest and largest x, the average is one sided. This is

the boundary problem.
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Bootstrap

Nonparametric Regression

Of course, we could also average all the observations within
some bandwidth A

Nadaraya-Watson:

() = Dicq YilS (%)
i K (555)

where K (-) is a kernel weighting function as above.

Again, bias in h? and variance in 1/nh if p, = 1.
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Choosing h

Plug-in estimates work badly here.
In most cases leave one out cross-validation is feasible

Can be shown that this amounts to

2
N

min CV'(h) = Z yi — ()
h =1 \1— {wii,h/ > wii,h

So not that hard: for each h, only need to compute one
weighted average m/(x;) for each N.
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Multivariate Kernels

Typically we are interested in more than one regressor
Yi = m(T1i, .., Thi)

the NW kernel estimator extends naturally to k& dimensions
N _
Zi:l yiK (XI hxo)

Yr K (5x0)

where we just use a mutivariate kernel.

m(xo) =

If you rescale by dividing by the standard deviation, you can
even use a common bandwidth.
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Ex: MST
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Silverman’s Table

Silverman (1986 book) provides a table illustrating the difficulty
of kernel estimation in high dimensions. To estimate the density
at 0 of a N(0,1) with a given accuracy, he reports:

Dimensionality Required | Sample Size
1 4
2 19
5 786
7 10,700
10 842,000
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Silverman’s Table

Silverman (1986 book) provides a table illustrating the difficulty
of kernel estimation in high dimensions. To estimate the density
at 0 of a N(0,1) with a given accuracy, he reports:

Dimensionality Required | Sample Size
1 4
2 19
5 786
7 10,700
10 842,000
Not to be taken lightly... in any case convergence with the

optimal bandwidth is in n=2/(*+Pv) now—and Silverman's rule
of thumb for choosing h} must be adapted too.
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Back to one dimesion |

We can interpret the standard kernel estimator as estimating a
constant regressino function g(z) =m

where

N

™ = arg min,, ZK <xz;$0> (yi — mo)2

i=1

Taking the FOC, we see that this yields

() (5
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Local Linear Regression |

This suggests other functions instead of constants (that is why
we're interested in this regression in the first place!)

A natural option is local linear regression:
m(z) = a+ Bz — zo)

where

N

(6, B) = arg min,, 4 ZK (W) (yi — a+ Bla; — x0))?

=1

57 /121



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

k-NN
MV Kernels
Local linear

Ex: MST

Bootstrap

Local Linear Regression |l

Advantages:

® the bias becomes 0 if the true m(z) is linear.

e the coefficient of (x — x;) estimates m/(z).

® behaves better in “almost empty” regions.

Disadvantages: hardly any, just do it! How?
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Example from Cameron and Trivedi

As an illustration, consider data generated from the model
vi = 150+ 6.55; — 0.15x7 +0.001x) + &, i=1,...,100, 9.17)
X =1,
& ~ NT0,25%].

The mean of y is a cubic in x, with x taking values 1, 2, ..., 100, with turning points
at x = 20 and x = 80. To this is added a normally distributed error term with standard
deviation 25.
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S k-Nearest Neighbors Regression as k Varies

Estimation

KDE
Bandwidth

350
1

. Actual Data *
kNN (k=5)

swreeeene Lingar OLS ..
—————— kNN (k=25

Cross-
Validation

300
1

Example:
Auctions

Non-

parametric

Regression
k-NN

250
1

MV Kernels

200
1

Local linear

Ex: MST

Dependent variable y

Inference

150
1

Bootstrap

Basis T I I I I

Expansions 0 20 40 60 80 100
Decision Regressor x

Trees

Semi-
parametrics

Covert &
Sweeney
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Locally weighted scatterplot smoothing (lowess)

Dependent variable y

200 250 300 350

150

Lowess Nonparametric Regression

. Actual Data .
Lowess (k=25)
=-=weeee=== QLS Cubic Regression .

T
1] 20 40 60 80 100

Regressor x
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Example: Fracking and house prices
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parametrics American Economic Review 2015, 103(12): 3633-3659
http:/dx.doi.org/10.1257/aer. 20140079

Murry &

Sweeney
Density
Estimation
KDE . 2
— The Housing Market Impacts of Shale Gas Development’
Cross-
Validation By Luciia MUEHLENBACHS, ELISHEBA SPILLER, AND CHRISTOPHER TIMMINS™
Example:
LSHORS Using data from Pennsvlvania and an array of empirical technigues
Non- to control for confounding factors, we recover hedonic estimates of
F’Raramet,”c property value impacts from nearby shale gas development that vary
:Ng':ess'on with water source, well productivity, and visibilitv. Results indicate
MV Kerncle large negative impacts on nearby groundwater-dependent homes.
Local linear while piped-water-dependent homes exhibil smaller positive impacts,
Ex: MST suggesting benefits from lease pavments. Resulis have implications
Inference for the debate over regulation of shale gas development. (JEL 171,
Bootstrap 35, Q53,R31)
Basis
Expansions
Decision Muehlenbachs, Spiller, and Timmins (2015)
Trees
Semi-

parametrics

Covert & 63 / 121
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Empirical Strategy: DD

Groundwater
on shale

PWSA
on shale -

Question: How big to make the circles?
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Empirical Strategy: DD

In deriving our empirical specification based on the preceding intuition, we
begin by considering the price of house i at time f as a function of all well pads
(k=1,2,...K), a house fixed effect (1), a fixed effect that varies with both geog-
raphy (i.e., either county or census tract) and year (), and a temporal fixed effect
indicating the quarter (g;):

K
(2) InPy = ap+ Z PigWie + i + Vig + g + €y
=l

where k indexes the well and K is the total number of wells in Pennsylvania; wy, = 1
if well pad k has been drilled by time 7 (in a sensitivity analysis we differentiate
between wells that are merely drilled and actually producing); and pj, translates the
presence of well wy, into an effect on house price based on its proximity. We can
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First show flexible representation

0.5
@
T 07
p=}
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@
b4
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2
a
=
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/ ; ;
Vi Before drilled == = After drilled
”
Bandwidth = 986 meters, N1 = 417, N2 = 430
1 A
T T T T T T
] 2,000 4,000 6,000 8,000

Distance from well (meters)

10,000

FIGURE 5. PRICE GRADIENT OF DisTANCE FROM FUTURE/CURRENT WELL, USING GROUNDWATER-DEPENDENT AREAS

Code from their replication files saved here
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Non- Nonparametric Regression, summary, 1

parametrics

Murry &
Sweeney Nadaraya—Watson for E(y|xz) = m(z)
koE m(:E) — Zz leh('I - xl)
Bandwidth Zz Kh ($ _ xz)
® bias in O(hZ), variance in 1/(nhP*)
e optimal A in n~1/(P*+4). then bias, standard error and
o RMSE all converge at rate n—2/(rt4)

el e ® to select h, no rule of thumb: cross-validate on a
Ex: MST
subsample and scale up.

Bootstrap
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Nonparametric Regression, summary, 2

Nadaraya—Watson=local constant regression: to get 7 (z),

@ regress y; on 1 with weight Kp(z — ;)

@® take the estimated coeff as your m(x).
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Non- Nonparametric Regression, summary, 2

parametrics

Murry &

Sweeney Nadaraya—Watson=local constant regression: to get 7 (z),
@ regress y; on 1 with weight Kp(z — ;)

Sandidh @® take the estimated coeff as your m(x).

Better: local linear regression

@ regress y; on 1 and (x; — x) with weight K, (z — z;)

@ take the estimated coeffs as your m(z) and m/(x).

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap
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Nonparametric Regression, summary, 2

Nadaraya—Watson=local constant regression: to get 7 (z),

@ regress y; on 1 with weight Kp(z — ;)

@® take the estimated coeff as your m(x).
Better: local linear regression

@ regress y; on 1 and (x; — x) with weight K, (z — z;)

@ take the estimated coeffs as your m(z) and m/(x).

To estimate the standard errors: bootstrap on an
undersmoothed estimate (so that bias is negligible.)
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Non- Bootstrap and Delta Method (skip*)
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® \We know how to construct confidence intervals for
parameter estimates: 0, + 1.96SE(6y)

e Often we are asked to construct standard errors or
confidence intervals around model outputs that are not just
parameter estimates: ie: g(x;,0).

KDE
Bandwidth

e Sometimes we can't even write g(x;, ) as an explicit
function of 6 ie: ¥(g(x;,0),0) = 0.
o ® Two options:
WV Kernels @ Delta Method

Local linear

Ex MsT ® Bootstrap

Inference

Bootstrap
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Non- Delta Method

parametrics

Secre Delta method works by considering a Taylor Expansion of

g(z;,0).

e 9(2) = g(20) + ¢'(20)(z — 20) + o(]|z — z0]|)
Assume that 6,, is asymptotically normally distributed so that:

Vn(0, —6p) ~ N(0,%)

E:KF:?,S Then we have that

Vinlg(6.) = 9(60)) ~ N(0, D(6)=D(9))
Where D(6) = W is the Jacobian of g with respect to

theta evaluated at 6.
We need g to be continuously differentiable around the center

of our expansion 6.
Sover & 70/121



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

k-NN

MV Kernels
Local linear
Ex: MST

Inference

Bootstrap

Delta Method: Examples

Start with something simple: Y = X - X5 with
(X14, X9;) ~ IID. We know the CLT applies so that:

a(mm) ~~(0)

99(0)
The Jacobian is just D(0) = 8‘36('}9) = <M2>

So,

021 022 H1
V(X1 Xy — ppa) ~ N(0, 507, + 2 p12012 + 117055

V(Y)=D(0)ED®) = (n2 1) (011 Ul2> <u2>
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parametrics
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Think about a simple logit:
Bo+61X;

ex

P(Y; = 1]X;) = —P

KDE
Bandwidth

1+ expﬁo-"ﬁlXi
1
1 + expPothiXi

Remember the “trick” to use GLM (log-odds):
log P(Y; = 1]X;) — log P(Y; = 0[X) = fo + A1 X;

PY;=0|X;) =

k-NN
MV Kernels

el e * Suppose that we have estimated Sy, 31 via GLM/MLE but
,n;erence we want to know the confidence interval for the
Boststrp probability: P(Y; = 1]X;, 0)
® The derivatives are a little bit tricky, but the idea is the
same.
® This is what STATA should be doing when you type: mfx,

compute
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Delta Method: Learning example

Often we have a nonlinear model that we transform and
estimate linearly.

Here is an example on learning curves from Eric Zivot.

Example 2 Estimation of Generalized Learning Curve

Consider the generalized learning curve (see Berndt, 1992, chapter 3)

Cy = ON Py R exp(uy)

where
Cy = real unit cost at time ¢
Nt = cumulative production up to time ¢
Y:; = production in time t
ug ~ iid (0,0?)
ac = learning curve parameter
R = returns to scale parameter
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Intuition: Learning is proxied by cumulative production.

e If the learning curve effect is present, then as cumulative production (learn-
ing) increases real unit costs should fall.

e If production technology exhibits constant returns to scale, then real unit
costs should not vary with the level of production.

e If returns to scale are increasing, then real unit costs should decline as the
level of production increases.



The generalized learning curve may be converted to a linear regression model
by taking logs:
[ 1-R
InC; = InCqy+ (—) In Ny + (—) InY; +u
t 1 R t R t t
Bo+B1In N+ BalnY; + g

= xB8+u
where
Bo = InCq
B1 = ac/R
8, = (L—R)/R

x;t = (1,In Ny, InYy).



The learning curve parameters may be recovered using

_ B
Qe = 1+62—91(5)

= g2(8)

Ay
Il

1+ 5,



Least squares gives consistent and asymptotically normal estimates
B = (XX)Xy~p

n
8 = n Y (n—-xiB)* B o?
t=1

. A
B~ N(B,&X(X'X))
Then from Slutsky's Theorem

. B1 p B

(075} —_— = Q¢
1+8, 145

~ 1 1

R=_—_2 =R

provided 8y # —1.



We can use the delta method to get the asymptotic distribution of ) =
(Ge, R)

(5) - (25)
R 0(P)

Ay (g(ﬂ), (aggé )> P2(X%) (8225 )> )
0g(8) (3%15(15) 991(8) 391(5))

7 = | oB) onl®) oul
B ) oz o)

1 —B1
(1+82) )

where

I
—
o o
]
£|
LS
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Delta Method: Some Failures

But we need to be careful. Suppose that 8 =~ 0 and
° g(z) = |X]
° g(x)=1/X
° g(x) = VX

These situations can arise in practice when we have weak
instruments or other problems.
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Bootstrap |

® Bootstrap takes a different approach.

® |nstead of estimating 6 and then using a first-order Taylor

Approximation...
® What if we directly tried to construct the sampling
distribution of 67
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Data (X3, ...

, Xn)

Bootstrap Il

~ P are drawn from some measure P

® We can form a nonparametric estimate P by just assuming
that each X; has weight *

We can then simulate a new sample
X*=(X7,.

LX)~

~ P.

® Easy: we take our data and construct n observations by
sampling with replacement

Compute whatever statistic of X*, S(X™*) we would like.

® Could be the OLS coefficients 37, ...

® Or some function 8;/5;.
® Or something really complicated: estimate parameters of a

game 0* and now find Nash Equilibrium of the game

S(X*,0*) changes.

Do this B times and calculate at Var(Sy) or
aSb)-

CI(Sy, ...

, Bi-
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® Linear predictor 8 = E[X;X!] ' E[X,Y]
e Sample {(Y;, Xi)}¥,
anduideh e OLS: Bos = 2N, Xo X' 2N, XY
® To get the variance, resample with replacement B times
and calculate Busp = [Y00) X X571 X))
® Now an estimate of the variance is just
k-NN 1 B — —
E"ov:l”e' V(ﬂols) = E zb:(ﬁols,b - ﬁals,b) ' (ﬁols,b - /Bols,b)/

Bootstrap

o, 82/121



Non- Bootstrap: Variants |

parametrics

Murry &
Sweene: . .
Y The bootstrap | have presented is sometimes known as the
nonparametric bootstrap and is the most common one.
T Parametric Bootstrap instead of bootstrapping pairs (Y, X;),
we can bootstrap the residuals.
* First estimate 3,5 by OLS
® Get residuals ¢, = Y; — XS5
e Forb=1,...,B, resample N residuals ¢;
o ® Predict a new Y}, j = X[ Bois + €
Y ez e Estimate with OLS and proceed as before.

Local linear
Ex: MST

Bootstrap
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Bootstrap: Variants |l

Wild Bootstrap Similar to parametric bootstrap but we rescale
€; to allow for heteroskedasticity

Block Bootstrap For correlated data (e.g.: time series). Blocks
can be overlapping or not.
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Murry &
ST The main idea is that 6'*,...,6* approximates the sampling
distribution of §. There are lots of things we can do now:
o * We already saw how to calculate Var(6*, ..., 65%).
1 B
N* N2
B_lz(%—@ )
b=1
N N Dw B 0
* Calculate E(0f,y,...,0(5) =0 = 532, 0.
® \We can use the estimated bias to bias correct our estimates
k-NN
S Bias(f) = E[p] -0
over Bias, () = 6*—90
Bootstrap Recall § = E[0] — Bias[f]:

0 — Bias,,(0) =0 — (0 — ) = 20 — 6
e Correcting bias isn't for free - variance tradeoff!
® Linear models are (hopefully) unbiased, but most nonlinear

Covert 8. models are consistent but biased. 85 /121
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Bootstrap: Confidence Intervals

There are actually three ways to construct bootstrap Cl's:
@ Obvious way: sort 6* then take CT : [AZ/Z, AL&/Q].
@ Asymptotic Normal: CT : 6 +1.964/V (6%). (CLT).

© Better Way: Use a pivotal statistic that you know the
distribution of.
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Bootstrap Cl: percentile t method

Instead of estimating 6, for each bootstrap sample,
estimate the t-statistic t* = (0° — ) /s,,, where 6 is the
original estimate.

The empirical distribution of ¢* can then be used to
approximate the known t-distribution (which has nothing
to do with our data)

Le‘-c tfl—a/2] ar.1d tfa/?] de.note the lower and upper a/2
quintiles of this distribution.

A confidence interval can then be constructed as

(é - tl[)l—oz/Q] X §é,é+ tl[)a/Q} X gé)
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Bootstrap: Why do people like it?

® Econometricians like the bootstrap because under certain

conditions it is higher order efficient for the confidence
interval construction (but not the standard errors).
® |ntuition: because it is non-parametric it is able to deal
with more than just the first term in the Taylor Expans
(actually an Edgeworth Expansion).
® Higher-order asymptotic theory is best left for real
econometricians!

® Practitioner’s like the bootstrap because it is easy.

® |f you can estimate your model once in a reasonable
amount of time, then you can construct confidence
intervals for most parameters and model predictions.

ion
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Bootstrap: When Does It Fail?

Bootstrap isn't magic. If you are constructing standard
errors for something that isn't asymptotically normal, don't
expect it to work!

The Bootstrap exploits the notion that your sample is IID
(by sampling with replacement). If IID does not hold, the
bootstrap may fail (but we can sometimes fix it!).

Bootstrap depends on asymptotic theory. In small samples
weird things can happen. We need P to be a good
approximation to the true P (nothing missing).
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Bootstrap vs Delta Method

Delta Method works best when working out Jacobian D(6)

is easy and statistic is well approximated with a linear
function (not too curvy).
| would almost always advise Bootstrap unless:

® Delta method is trivial e.g.: 3,/ in linear regression.
® Computing model takes many days so that 10,000
repetitions would be impossible.

Worst case scenario: rent time on Amazon EC2!
® | “bought” over $1,000 of standard errors recently.

But neither is magic and both can fail!
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Murry &
seenes ® Return to the theme of these slides: Estimating a
nonparametric regression function.
e ® For kernel regression, you need to present Cl's pointwise.
Sanduideh ® CT recommend presenting Cls for f(z,) for the first nine
deciles of

Bootstrap
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Cl's for Kernel Smoothers

Return to the theme of these slides: Estimating a
nonparametric regression function.
For kernel regression, you need to present Cl's pointwise.
® CT recommend presenting Cls for f(x,) for the first nine
deciles of

If we ignore the bias b(zg) inherent in m(xg) then,

m(xg) € m(xp) + 1.96\/ e /K )2dz

where 62 = " w;o €% and f(x0) is the kernel density
estimate at xg

Since we know that there is bias, if we use Aoy, this Cl will
suffer from undercoverage

On option is to undersmooth. By pick a bigger h, the bias
goes to zero, the square of the bias will converge faster

than the variance
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An alternative is to bootstramp Cl's

Consider the following routine proposed by Yatchew.

@ Use CV to find the optimal bandwith. Call this A and the
estimated function f)

@® Reestimate f with using a wider bandwidth A = 1.1\
(oversmoothing)

© Reestimate f with using a narrower bandwidth of .9\. Get
undersmoothed residuals ¢;

O Center residuals and use pan:ametric boostrap to
generated B samples y¥ = fy(z;) + &

@ Now estimate ff\’(xo) using the original A

® Can obtain 95% Cls from 0.025 and 0.975 quintiles of
FE (o)
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Seminonparametric (=Flexible) Regression

Linear model won't fit well when true relationship is
nonlinear

But fully flexible models may require a lot of data
Alternative is to replace X with M transformations of
hin(X)

Then model f(X) =" Bmhm(X)
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Series or sieves

® This is a parametric approximation that becomes more
accurate as the sample size increases

¢ |dea: we add regressors when we have more data,
eventually providing an arbitrarily close approximation to
the true regression function

® Polynomial Example: m(z; 8k ) = Zszl Bjxj
e Given K, just estimate model using OLS

® In practice, you'll want to choose K using leave-one-out
cross validation.

Note that simple polynomials often perform poorly in some
parts of the datal
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e First consider a single dimensional X
® Divide f into contiguous intervals, and pick a function to
O represent y on each interval
® A natural starting point would be a piecewise constant
function, broken up by boundary points &; and &
hi =1(X <&);he =1(& < X <&)jhs =1(& < X)
S ® This predicts the interval average for all X
Local linear
Basis

Expansions

Covert & 95 / 121
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Piecewise Constant Piecewise Linear

& &2 &1 3

Continuous Piecewise Linear Piecewise-linear Basis Function

& &2 & &

FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
&1 and &3. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise—
linear basis function, ha(X) = (X — & )4, continuous at &. The black poinis
indicate the sample evaluations ha(z,), i =1

96 /121



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap

Basis
Expansions

Piecewise polynomials (cont)

e \We can improve this by adding three additional basis
functions: hy,13 = by (X)X
e \We can then make it continuous by

hi =1
ho =X
hs = (X — &)+
hy = (X — &)+
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Smooth splines

We can improve this further by increasing the order of the

local polynomial

A common option is cubic splines:

hi=1, ho=X; hs=X?
hy =23 hs(X — 51)1; he = (X — 52)i

This is a six dimensional space: (3 regions) X (4
parameters per region) - (2 knots) X (3 constraints per
knot)

In practice people never use higher than cubic
Picking the knots is more subjective (use CV?)
Also typically use B-splines (see HTF)
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parametrics FIGURE 5.2. A series of piecewise-culric polynomials, with increasing orders of
Covert & continuity. 99 /121

Sweeney



Non-
parametrics

Murry &
Sweeney

KDE
Bandwidth

k-NN

MV Kernels
Local linear
Ex: MST

Bootstrap

Basis
Expansions

Natural Splines

THF: "We know that the behavior of polynomials fit to data
tends to be erratic near the boundaries, and extrapolation can
be dangerous. The polynomials fit beyond the boundary knots
behave even more wildly than the corresponding global
polynomials in that region."

Natural Cubic Splines Add a further constraint that the fitted
function is linear beyond the boundary knots
With K knots is represented by K basis functions:

hi=1

hy =X

hiyo =dp —dg—1

where,
(X —&)% - (X —¢w)3

4(X) = §x — &
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Smoothing Splines

Idea: pick knots to minimize RSS

N
min (0 — £ + AT [ (" (@)
where )\ is a smoothing parameter and f(z) is any twice
differentiable function

If A\ = oo, this is just OLS (f” =0)
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Smoothing Splines

Idea: pick knots to minimize RSS

N

. R 2 " 21‘
min (0 — f(21) +AJ/(f())d

where )\ is a smoothing parameter and f(z) is any twice
differentiable function
If A\ = oo, this is just OLS (f” =0)

Remarkably, THF show that the solution has a unique
finite-dimensional maximizer which can be represented as a
natural cubic spline with knots at NV chosen points.

We'll discuss this shrinkage estimator next week.
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ML Alternative: Tree-based methods

Tree based methods provide an alternative non-parametric
approach.

The basic idea is to split the data (possibly many times),
dividing the sample into distinct groups.

The model prediction is then just the average for each
group.

We'll select the splits to maximize the predictive power of
the splits. We'll then use cross-validation and other ML
concepts to consider alternative "trees", which we'll
combine to get the best predictor.
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Example: How much will households save from an
energy efficiency program?

e Many drivers of energy use: weather, age, household
characteristics, income. Also many drivers of
responsiveness to an intervention.

® Even if we have all this data, not sure how to combine
them. These features could interact in a way that would
quickly rule out k-NN in every dimension.

e Knittel and Stolper 2020 model this using trees (and
compare to other approaches)
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Example tree

n=140e+3 87.7%

home_value < 270e+3

1051

448
n=122e+3 7.2%

n=24.1643 142%

-10.2
n=46.6e+3 27.5%
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... group predictions

e

-10.4

n=253e+1 149%

n=18.2e+3 10.8%

=167
n=12.4e+3 73%

=501
n=12.8e+3 76%

-T87
n=15.0e+3 0.4%

-244
n=17.8e+3 10.5%
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When will trees outperform?

o o

Ko
]
Xa
]

B
B

Ko
Xz

-2 -1 o 1 2

X X

FIGURE B8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).
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Real returns come from “bagging”

You know about bootstrapping (see above)

bagging = "bootsrap aggregating”

One tree could perform only marginally better than
another in sample. But when you look at the two trees,

they could seem totally different. This suggests that trees
are a very high variance predictor.

A natural solution to this is to take many subsample of our
data, build trees, and average the predictions across them.
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Even better: Random Forests

® In many datasets, each sample in the bag will still end up
generating pretty similar trees.

® Sometimes you have a few highly predictive variables that
allways get selected, or a few that are highly correlated
such that some never get selected. This should again give
us pause.

® |t turns out that you can increase performance by
randomly varying the set of predictors available for the tree
to split on.

Example: check out Paul Shrimpf’s lecture notes and code.
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Non- Semiparametric Regression

parametrics
Murry &

Sweeney

® Previous methods placed no structure on the model
® Sometime we're willing to impose some structure, typically
O to isolate a parameter or ratio that we're particularly
interested in
e Fully non-parametric methods controlling for other factors
not possible due to the curse of dimensionality.

Bootstrap

Semi-
parametrics
Covert & 109 /121
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Examples

Table 9.2. Semiparametric Models: Leading Examples

Name Model Parametric Nonparametric
Partially linear E[y|x,z] = '8 + A(z) B A-)
Single index Ely|x] = g(x'/3) 3 e(-)
Generalized partial  E[y|x, z] = g(x'[3 + A(z)) 3 g(-LA(-)
linear
Generalized additive E[y|x] = ¢+ ZLI gjlx;) — g;i)
Partial additive Elyixzl =XB+c+ T giz)) 3 gi()
Projection pursuit ~ E[y|x] = Zj’; g;i(x;3;) 3, gl
Heteroskedastic El[y|x] = x'3: V[y|x] = ¢(x) 3 o?(4)

linear

For a formal treatment of these and discussion of convergence,
see Powell (1994).
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Partial linear model

We'll focus on the most commonly used model: the partial
linear model

yi = XiB+9(Zi) +ei
We are interested in /3, but g() is an unrestricted (unknown)
function of z.
Identification requires Cov[X, g(Z)] =0

Robinson (1988) showed that we can concentrate this g() out
of the model.
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Robinson 1988
yi = X{B+ 9(Z) + e
where € =Y; — E[yl|XZ, Zz]
Take the conditional expectation
ElyilZi]) = E[Xi|Zi]'8 + 9(Zi) + Eleil Zi]

then note that Ele;|Z;] = E[Ele;|Xi, Zi]] =0
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Robinson 1988
yi = X8+ 9(Zi) + e
where € =Y; — E[yl|XZ, Zz]

Take the conditional expectation
Elyi|Zi] = E[Xi|Zi]' 8 + 9(Z:i) + Elei| Zi]

then note that Ele;|Z;] = E[Ele;|Xi, Zi]] =0
Subtractcing yields

yi — Elyi| Zi] = (Xi — E[Xi|Zi))'8 + e
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So this suggests a natural procedure:

1. Estimate the conditional expectations m,(z) = E[y;|Z;] and
my(2) = E[X;|Z;] separately (and flexibly) for each = using
the methods discussed in the previous section.

2. Estimate (8 using OLS on the residuals

yi — my(2) = (Xi — ma(2)) B+ e
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Robinson 1988 1l

So this suggests a natural procedure:

1. Estimate the conditional expectations m,(z) = E[y;|Z;] and
my(2) = E[X;|Z;] separately (and flexibly) for each = using
the methods discussed in the previous section.

2. Estimate (8 using OLS on the residuals

yi — my(2) = (Xi — ma(2)) B+ e

Note: Yatchew (1997) suggest step 1 can be avoided entirely by
simply sorting on z, and running the model in first-differences.

For a recent example, Hastings and Shapiro (AER 2018)
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e What's the best way to sell something? Theory ambiguous
st generically, but widely thought that auctions are nearly
optimal in most settings.

® How much does this matter in the real world? We see
many things sell not using auctions, could compare
outcomes. Challenge: these are probably selected.

o ® In Covert & Sweeney 2019 we leverage a natural

e experiment in Texas, where thousands of parcels

o quasi-randomly assigned to different mechanisms during
- the recent shale boom.

e Challenge Even though we have random variation in the
mechanism, we don't have that much data, and there are
some important factors that we must flexibly control for.

Covert & 114 /121
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2011 - present:
Mean = $10.82 / bbl

2000-2010

MV Kernels Mean = -$1.40 / bbl
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T T T T
Initararnae 01jan2000 01jan2005 01jan2010 01jan2015

Bootstrap
Basis Brent Qil Spot Price ——— West Texas Qil Spot Price
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Y Using leases from the shale boom, we estimate:
e Y, = TAuction; + X3 + 5L(i),T(i) + €
Bandwidth
where X includes size, lease terms, surface controls, ¢ is
location-time fixed effects or DML (Chernozhukov et. al., 2018)
k-NN
MV Kernels

Local linear
Ex: MST

Bootstrap
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Example Results

Dependent variable: Log bonus per acre

(1) (2) (3) (4) (5)
0.36 0.36 0.37 0.37 0.52

Auction

(0.07) (0.08) (012) (0.08) (0.05)
Grid 10 10 10 20 DML
Time Q GY,Q GYQ GY,Q DML
N 1,274 1,274 1,274 1,274 1,274
R? 0.866 0.953 0.973 0.917

Grid size is 10 miles, 20 miles or location-by-time control with a DML
random forest. Controls include a spline in acres, royalty, and term.
SEs clustered by location.

Average RAL negotiation leaves &~ $133,000 on the table!
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Review: What was the point?

® OLS is lowest variance among linear unbiased estimators.

® But there are nonlinear estimators and potentially biased
estimators.

Everything faces a bias-variance tradeoff.

Nearly anything can be written as Kernel.

These are easy to implement in big data settings in one or
two dimensions, but quickly run into the curse of
dimensionality.

Semiparametric approaches often a useful middle ground.
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