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Abstract

We analyze how information disclosure policy affects investment efficiency in non-
cooperative settings with information externalities. In a two-firm, two-period model,
we characterize equilibrium behavior under policies which disclose whether investment
returns exceed a predefined level. These policies include complete secrecy, in which
players only observe rival actions, as well as full disclosure, in which players also per-
fectly observe rival returns. With less disclosure (higher disclosure thresholds), there
is less free riding, but additional losses from incomplete information aggregation. We
characterize the surplus maximizing disclosure threshold in this environment, and show
how it depends on firms’ patience. We then apply the model to the early years of the
shale boom in Pennsylvania and West Virginia, which at the time were governed by
complete secrecy and full disclosure, respectively. We find that full disclosure would
have maximized surplus in both states, generating 49% and 160% more value than
complete secrecy.
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1 Introduction

In non-cooperative environments, correlated outcomes from risky investment opportuni-

ties generate information externalities: one player’s investment choice can change another

player’s beliefs about the returns to investment. Oil and gas exploration with decentral-

ized landownership is a classic example of this phenomenon. Once one firm drills its land,

neighboring firms can learn that this investment happened, possibly learn the returns to it,

and, armed with this knowledge, make a less risky investment decision. The potential for

firms to “free ride” on other’s exploratory effort has been shown to generate costly delay,

suboptimal information acquisition and inefficient sequencing of investment choices (Hen-

dricks and Kovenock, 1989). Although this paper is about oil and gas exploration, the

underlying economic forces we study generalize to other innovative settings, like uncertain

demand (Chamley and Gale, 1994; Rob, 1991), real estate investment (Grenadier, 1999),

and pharmaceutical development (Krieger, 2021).

A common response to the prospect of free riding on innovative efforts is to allow firms

to keep secrets (Friedman et al., 1991). For example, in oil and gas exploration, many

governments keep the production information of newly drilled wells that they collect for tax

purposes confidential. By delaying or eliminating the possibility of observing rival outcomes,

strict secrecy reduces free riding. However, secrecy can exacerbate losses from incomplete

information aggregation. During a secrecy period, some wells which shouldn’t be drilled

(based on all available information) will be, while other opportunities which are profitable

will go unexploited.

In this paper, we study the net effect of these forces, and ask whether confidentiality laws

improve investment efficiency. In the first part of the paper, we theoretically analyze invest-

ment behavior under two extreme information disclosure policies: complete secrecy, under

which firms who wait learn only whether or not their rival invested, and full disclosure, un-

der which firms whose rivals invest also learn the outcome of that investment. Our analysis

generates predictions about the level and timing of investment across these two regimes, and

allows us to characterize the conditions under which each regime generates more efficient

investment than the other. We then generalize our theoretical analysis to consider interme-

diate information disclosure policies. In the second part of the paper, we apply this model

to rich oil and gas exploration data in the Appalachian shale basin where, at the start of

the recent shale boom, Pennsylvania had a policy of complete secrecy, while neighboring

West Virginia had a policy of full disclosure. We fit our theoretical model of each regime to

the data, estimate the underlying primitives for this setting, and simulate outcomes under
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counterfactual disclosure policies to identity the optimum.1

To model strategic responses to secrecy policy, we build on the social learning model of

Hendricks and Kovenock (1989) (henceforth HK), who study the behavior of competing oil

firms under a full disclosure policy.2 The HK model features two firms, each endowed with a

noisy signal of the common return to drilling, as well as a two period investment opportunity.

The environment they study has a full disclosure (FD) information policy because a firm

who waits will learn whether its rival waited, as well as the true return to drilling if its

rival drilled first. HK show that the unique symmetric Bayes-Nash equilibrium of this game

involves cutoff strategies: firms with high signals drill in the first period, while firms with

lower signals wait. If one firm drills early, and the other waits, the waiting firm learns the

returns to drilling and makes an efficient investment decision.

We modify the HK model to understand strategic responses to a policy of complete

secrecy (CS). In this environment, a firm that waits learns no information about the outcome

of investment if its rival invests in period one, but it does learn that investment happened.3

This induces some free riding, as firms who wait learn something about their rival’s signal.

We show that this game also has a symmetric equilibrium in cutoff strategies, in which firms

with high signals drill early, while firms with lower signals wait. Consistent with the fact

that the information revealed to those who wait is less valuable in CS, we show that there is

less free riding, compared to FD. Whether this reduction in free riding generates a welfare

gain depends on the value of the informational spillovers that do not occur in CS but will in

FD. While the net effect depends on the primitives of the problem, we provide a sufficient

1In this paper, we only consider the private benefits and costs associated with investment. In the case of
oil and gas extraction however, investment also generates significant external costs. Truly “optimal,” social
welfare maximizing, disclosure policy in this context would incorporate these social costs. Nevertheless, for
ease of exposition, throughout the text we refer the policy that maximizes private payoffs as “optimal,” and
private surplus as “welfare.”

2The economic theory on bandit games has also explored the equilibrium effects of investment disclosure
in games with information spillovers. Rosenberg et al. (2013) studies an irreversible exit version of the
exponential bandit setting pioneered by Keller et al. (2005), finding that games with publicly disclosed
outcomes deliver higher equilibrium payoffs than similar games with no outcome disclosure. Heidhues et
al. (2015) studies a traditional discrete time multi-armed bandit game, allowing for communication between
players, and comes to the opposite conclusion, that equilibrium payoffs can actually be higher in a game
without publicly disclosed outcomes. Both papers assume that players face an infinite investment horizon.
In contrast, our motivating policy example and empirical application is oil and gas exploration, which is
inherently finite horizon. Furthermore, both papers envision an intensive margin of investment, whereas
mineral exploration (and clinical trials) are inherently binary decisions.

3In the motivating examples of mineral exploration, clinical trials and real estate development, the act
of investment is essentially unhideable. However, in other settings this may not be the case. Bonatti and
Hörner (2017) studies the role of disclosure of investment actions in games with information spillovers,
assuming outcomes are always observable. Using a Keller et al. (2005) style model they conclude that
equilibrium payoffs can increase or decrease in response to making actions observable, depending on whether
the information that actions convey reflects “good” or “bad” news about the unobserved state of the world.
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condition which guarantees that FD generates more welfare than CS. The key force behind

this condition is the extent of firm patience, and sufficiently impatient firms will always

prefer full disclosure to complete secrecy.

Although full disclosure and complete secrecy are common real world information policies,

there is no reason why a regulator could not choose something in between these two extremes.

We make this point formally by studying a class of partial disclosure (PD) policies, in which

a binary characterization of the return to investment (is it above or below a pre-specified

threshold) is revealed in the second period if one player invests in the first period. We show

that all partial disclosure policies have a similar symmetric cutoff equilibrium structure,

with a first period cutoff signal which is non-increasing in the disclosure threshold. This

generalizes our result above, in that more disclosure (a lower disclosure threshold) increases

free-riding.

Our first result from studying partial disclosure is that some amount of disclosure is

“free.” Specifically, there is a disclosure threshold, which we call maximum nondistortionary

disclosure (MND), which generates the same amount of first period investment as CS (it has

the same first period equilibrium cutoff signal), but generates strictly more welfare in the

second period for players who wait. Thus, in this class of partial disclosure policies, complete

secrecy (a disclosure threshold equal to infinity) can never be the optimal disclosure policy,

regardless of the primitives of the problem. Our second theoretical result is that more

disclosure (a lower disclosure threshold) delivers higher expected player welfare, up to the

point at which it induces a phenomenon we call “no news” drilling. Depending on the

primitives of the environment, it is possible for firms to have signals that are lower than the

first period cutoff of a partial disclosure game, but are high enough that if they learn their

rival also waited, they can still profitably drill. When this happens, we say a firm has drilled

after learning “no news.” If the primitives of the environment are such that no news drilling

is impossible, even for the FD game (a partial disclosure game with a threshold equal to the

point of profitability), then full disclosure is the optimal policy.

Our inspiration for this analysis comes from differences in oil and gas disclosure policy

across US states. Every oil and gas regulator requires firms to report aspects of the drilling

and production process, for public safety and taxation purposes. However, different regula-

tors have different rules for publicizing these reports. We focus on disclosure policies among

oil and gas regulators in the Appalachian basin. Prior to 2011, regulators in Pennsylva-

nia allowed firms to request confidential treatment of all of their reports (production and

engineering) for 5 years. As this is the typical length of a mineral lease, this policy was

effectively one of complete secrecy. In neighboring West Virginia, confidential treatment

expired at after 1 year, which effectively amounted to a policy of full disclosure.
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Our empirical analysis employs data on mineral leases and drilling outcomes in these two

states from the start of the shale boom until the end of 2010, when Pennsylvania abruptly

revoked its confidentiality law and adopted a full disclosure policy. In a descriptive analysis

of investment behavior and outcomes, we focus on a narrow corridor around the border

between the two states, within which the underlying mineral resources are essentially the

same. We show that firms in Pennsylvania invest earlier and more often than in West

Virginia, consistent with there being less free riding under complete secrecy. However, we

also show that firms in West Virginia get substantially more output per well, consistent with

the drilling program under full disclosure being more efficient.

While these cross-sectional differences are consistent with our theoretical predictions

comparing FD and CS, they could also be driven by other factors that change at the border.

In order to hold these factors fixed and analyze counterfactual policy within each state, we

estimate a structural econometric version of the theoretical model. We divide each state into

square-mile drilling opportunities representing half of a latent two-player waiting game. This

allows us to write the likelihood of observed drilling decisions in each grid as a function of

unknown cost and signal distributions in each state, which we can maximize to estimate those

primitives. We recover investment costs of approximately $4-$5 million per well, which is in

line with estimates produced by the Energy Information Administration during this time.

In each state, we find that the model corresponding to the disclosure policy on the books

rationalizes the data better than a model imposing the alternative, although this test is

imprecise in West Virginia where our sample is small.

Having estimated these primitives, we compute expected welfare over the full range of

partial disclosure thresholds, holding other confounding factors fixed. In both states, we find

that full disclosure is optimal. Compared to complete secrecy, full disclosure generates 49%

and 160% gains relative to complete secrecy in Pennsylvania and West Virginia, respectively.

We also identify the maximum nondistortionary disclosure level in each state, and find that

the welfare of maximum nondistortionary disclosure is 85% and 63%, respectively, of full

disclosure.

This paper contributes to the literature on the role of information in strategic decision-

making in the oil and gas industry. As mentioned above, Hendricks and Kovenock (1989)

provide a theoretical model of social learning. While that paper shows that full disclosure

generates inefficiencies relative to planner behavior, we show that complete secrecy could sub-

stantially exacerbate those losses. Hendricks and Porter (1996) study investment on offshore

wildcat tracts in the Gulf of Mexico, and find the patterns match a non-cooperative “war of

attrition” game. Lin (2013) revisits that setting, and incorporates extraction externalities.

In a related paper, Hodgson (2021) also studies optimal disclosure policy in non-cooperative
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mineral exploration. Whereas we are interested in the question of what information the reg-

ulator chooses to disclose, Hodgson (2021) asks when a regulator should release information

in a full disclosure regime. In an empirical model of offshore drilling in the United Kingdom,

which has a five year secrecy period, he finds that revenue would be maximized under a con-

fidentiality period half that long. An important assumption in that paper is that, during the

secrecy period, firms not only fail to observe the returns to rival investment, but even the fact

that any investment occurred. In contrast, the model of complete secrecy we develop takes

as its starting point the observation that, in settings like mineral exploration, real estate

development, and pharmaceutical trials, the act of investment is practically un-hideable.

This paper also contributes to a literature on the learning during the shale boom. Covert

(2015) estimates the extent to which firms learned about fracking input choices. Steck (2022)

estimates whether the possibility of this learning lead to free riding. Agerton (2020) considers

the way in which selection into drilling resources of heterogeneous quality biases estimates of

productivity gains. Here we document considerable uncertainty about the location of shale

resources at the start of the boom, and highlight the role that government disclosure policy

played in identifying efficient investment opportunities in this uncertain environment.

2 A model of incomplete social learning

Our starting point is the model studied in Hendricks and Kovenock (1989), in which two

firms each have a two period mineral lease. Each firm can choose to drill in the first period,

drill in the second period, or not drill at all and allow the lease to expire. The actual returns

to drilling are π(X), where π(·) is a monotonically increasing function, and X ∈ (0,∞) is a

common, but unknown, resource quantity. Drilling is profitable whenever X is larger than

a known value x∗, and is unprofitable otherwise.

To decide whether or not to drill, each firm observes a private signal S about the value of

X. Conditional on the true state of the world (X = x), the signals are independently drawn

from some probability distribution Pr(S ≤ s | X = x) = F (s | x), and the distribution

F (· | ·) satisfies the monotone likelihood ratio property (MLRP). Thus, the probability that

X is high when a firm observes a high signal is larger than the probability that X is low

when it observes that signal, and vice versa (Milgrom, 1981). The analogous distribution of

X, conditional on a firm’s observation of a signal s, Pr(X ≤ x | S = s) = H(x | s), can be

obtained using Bayes’ rule, and its density is h(x | s). Though the value of X is common

to both leases, there is no common pool problem, so if one firm drills, it does not affect

the quantity of resources available for the other firm to recover. Both firms have a common

discount factor 0 < δ < 1.

A key informational assumption in the HK model is that the true value of X is uncertain
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until one (or both) firms drill, and if one firm drills its lease in the first period, its rival can

observe X perfectly in the second period. This is the full disclosure information policy we

described above. HK establish that the unique symmetric Bayes-Nash equilibrium of this

game satisfies a cutoff property: if a firm receives a signal at or above a cutoff level, it drills

in the first period, and otherwise it waits. If a firm waits, but its rival drills in the first

period, this laggard firm can “free-ride” and make an efficient drilling choice in the second

period, because X is revealed by its rival’s behavior. If both firms wait, then they make

single-agent optimal drilling decisions, updating their beliefs about X with knowledge that

their rival also had a signal lower than the cutoff level.

We study the effects of a complete secrecy information disclosure policy in this environ-

ment: if one firm drills in the first period and its rival waits, the rival learns that investment

occurred, but does not learn the true value of X. This setup is a reasonable approximation

to the information environment in which oil and gas exploration firms operate, in jurisdic-

tions with strong confidentiality policies. In this industry, it is impossible for a firm to hide

the fact that it decided to drill, because drilling requires a visibly large piece of capital (a

drilling rig) which will sit on the firm’s lease for weeks or even months. In other contexts,

this informational assumption is meant to capture the fact that real investment (construc-

tion in real estate or clinical trials in pharmaceuticals) is either physically hard to hide, or

regulators mandate its public disclosure. Thus, to the extent that cutoff equilibria exist in

this modified game, a firm who decides to invest indirectly informs its rival that its signal

is above some threshold. Our first task will be to establish the existence of a symmetric

cutoff equilibrium of the complete secrecy game, and to compare it to the behavior in the

full disclosure game.

To begin, we first introduce some notation and basic results that we’ll use throughout

this section. First, we’ll write E [g(X) | s] =
∫∞
0
g(x)h(x | s)dx for any function g(·) and

any single signal realization s. Next, we derive the expected value of functions of X under

knowledge of your own signal and the knowledge that your rival’s signal is bounded above

(or below) by a known constant.

Lemma 1 Let p and q be any signal realizations. The expected value of a function g(X)

when your signal, S, is equal to p, and your rival’s signal, T is less than or equal to q, is

given by:

E [g(X) | S = q, T ≤ p] =
E [g(X)F (q | X) | p]

E [F (q | X) | p]
Analogously, the expected value when your rival’s signal is larger than q is:

E [g(X) | S = q, T ≥ p] =
E [g(X)(1− F (q | X)) | p]

E [1− F (q | X) | p]
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For a proof, see appendix A.

We also re-state an existing result about the expected value of monotonic functions of

X, conditional on ordered signals:

Lemma 2 Adapted from Milgrom (1981), Proposition 4. For any signals t, u and v, and

any monotonic function g(x):

E [g(X)(1− F (u | X)) | t]
E [(1− F (u | X)) | t]

>
E [g(X)F (v | X) | t]

E [F (v | X) | t]

As applied to the setting here, a player with signal t who knows that its rival’s signal is

greater than u has a larger expected return to drilling than a player with the same signal

who knows that its rival’s signal is less than or equal to v. This is true for any values of u

and v. That is, finding out that your rival’s signal is below some threshold is “worse news”

than finding our that your rival’s signal is above some other threshold.

2.1 Equilibrium under full disclosure

With this notation and one application of Lemma 1, we can write the equilibrium condition

for the first period cutoff signal t1 in the full disclosure game as:

δ−1E [π(X) | t1] = E [1− F (t1 | X) | t1]E [max(π(x), 0) | S = t1, T ≥ t1]

+ E [F (t1 | X) | t1] max(0,E [π(x) | S = t1, T < t1])

= E [max(π(x), 0)(1− F (t1 | x)) | t1] + max (0,E [π(x)F (t1 | x) | t1])

In words, a firm with the cutoff signal t1 is indifferent between drilling today, and waiting

until the next period to either drill under full disclosure (if its rival drilled in the first period),

or optionally drill in the second period after learning that its rival did not drill. Firms with

signals larger than t1 strictly prefer drilling in the first period to waiting, and firms with

lower signals prefer to wait.

Whether a firm who waits (s < t1) is willing to drill after learning that its rival’s signal

was lower than t1 depends on whether E [π(X)F (t1 | X) | s] is non-negative. When this

object is strictly positive for s = t1, there is another cutoff, t2, that determines whether

players who wait in the first period will drill after “no news” in the second period, given by:

0 = E [π(X)F (t1 | X) | t2]

A firm with signal t2 is indifferent to drilling when its rival has a signal lower than the first

period cutoff, t1, and so all firms with signals in the interval [t2, t1) will wait, and drill after
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no news. It is possible for t2 > t1, so that any player who would drill after no news would

have already drilled in the first period.4 However, as we describe later, this situation is

economically interesting, as it guarantees that a full disclosure policy delivers higher welfare

than a complete secrecy policy.

2.2 Equilibrium under complete secrecy

We can derive a symmetric cutoff equilibrium of the complete secrecy game in a similar

fashion, summarized in the following proposition:

Proposition 1

1. Firms with signals at or above u1 drill in the first period, where u1 is the unique solution

to

δ−1E [π(X) | u1] = E [π(X)(1− F (u1 | X)) | u1] (1)

2. Firms with lower signals wait, and if a firm who waits learns in the second period that

its rival drilled, then it will drill if its signal is above u2, where u2 is the unique solution

to

E [π(X)(1− F (u1 | X)) | u2] = 0. (2)

3. u2 < u1

For a proof, see appendix B.

Firms with the first period marginal signal u1 are indifferent between drilling in the first

period, and waiting until the second period to see whether their rival drilled. If they wait

and learn that their rival drilled, they will drill too, but if their rival does not drill, they

won’t drill after waiting. Unlike in the FD game, drilling after no news is impossible in the

CS game.

Another important difference between the cutoffs in the FD game and the CS game is that

the second period cutoff, u2, determines whether a firm who waits will drill after observing

“some news,” namely that its rival drilled, whereas t2, the second period cutoff in the FD

game, determines whether a firm who waits drills after no news.

2.3 Comparison of the equilibria in the two games

The qualitative structure of the equilibria of these two games are different, at least in the

second period. In the full disclosure game, late drilling can occur even if there was no early

4Hendricks and Kovenock (1989) make an additional assumption (Assumption 3, on page 172) in their
analysis to rule out this possibility.
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drilling, while a player drills late in the complete secrecy game only when its rival drilled

early. It is also possible to ordinally rank the two sets of cutoffs.

Proposition 2 Drilling happens earlier under complete secrecy than it does under full dis-

closure (u1 < t1).

We prove this by contradiction. Suppose that u1 ≥ t1. Then the following algebra must

hold:

E [π(X) | u1] > δE [max(π(X), 0)(1− F (t1 | X)) | u1] + max(0, δE [π(X)F (t1 | X) | u1])

≥ δE [max(π(X), 0)(1− F (t1 | X)) | u1]

≥ δE [max(π(X), 0)(1− F (u1 | X)) | u1]

> δE [π(X)(1− F (u1 | X)) | u1]

= E [π(X) | u1] , a contradiction.

The first inequality comes from the fact if u1 ≥ t1, then a player with signal u1 who is in

the first period of the full disclosure game strictly prefers drilling to waiting. The second

comes from the fact that the payoff to waiting in FD at signal u1 when it is revealed that

the other player has a signal below t1 is non-negative, so removing it can only reduce the

total payoff to waiting. The third inequality comes from the fact that we have assumed

u1 ≥ t1, so that for any X, 1 − F (t1 | X) ≥ 1 − F (u1 | X), and that max(π(X), 0) is

non-negative. The fourth inequality comes from “adding back” the negative payoffs that can

occur when drilling, which players can sometimes avoid in the full disclosure game. The last

(contradicting) equality is the definition of the u1 cutoff. Thus, our assumption that u1 ≥ t1

must be wrong, and we can conclude that u1 < t1.

Proposition 2 tells us that there is less free-riding in CS than FD, in the sense that there

are signals s ∈ [u1, t1) which will drill in the first period of a CS game, but will wait in an

FD game.

Proposition 3 The second period cutoff is also lower (u2 < t2).

When no news drilling is impossible (t2 > t1), this is trivial, since u2 < u1 < t1. When

no news drilling is possible, we again prove by contradiction. Suppose u2 ≥ t2. Then the
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following algebra holds:

0 = E [π(X)(1− F (u1 | X)) | u2]

>
E [(1− F (u1 | X)) | u2]

E [F (t1 | X) | u2]
E [π(X)F (t1 | X) | u2]

≥ 0, a contradiction.

The first line is simply the definition of the equilibrium value for u2. The next line, a strict

inequality, comes from a re-arrangement of Lemma 2: at any signal s, value of drilling

when you know your rival’s signal is greater than or equal to u1 is better news than the

value of drilling when you know your rival’s signal is less than or equal to t1. The final line

comes from the fact that the definition of t2 tells us that for any signal s ≥ t2, the value of

drilling after observing that your rival has a signal lower than t1 is non-negative, and we have

assumed that u2 ≥ t2. However, this implies that the value of drilling when you have signal

u2 and you know your rival has a signal larger than u1 (the first fine) is strictly positive,

which violates the definition of u2. Thus, u2 < t2.

With these results, we can partially order the equilibrium cutoff values that occur in

these two games. When no news drilling is possible, we’ll either have u2 < u1 < t2 < t1 or

u2 < t2 < u1 < t1. When no news drilling is impossible, we’ll have u2 < u1 < t1 < t2.

2.4 Which game generates more value?

Let σg(s) ∈ {0, 1} denote a firm’s decision to drill in period 1 as a function of its signal in

the game g ∈ {Full Disclosure,Complete Secrecy}. The value of playing g given signal s is:

V g(s) = σg(s)E [π(X) | s] + δ(1− σg(s))W g(s)

where W g is value of waiting until period 2 to make a decision. While E [π(X) | s] is the

same for both games, the value of waiting differs:

WFull Disclosure(s) = E [max(0, π(X))(1− F (t1 | X)) | s] + max(0,E [π(X)F (t1 | X) | s])

WComplete Secrecy(s) = max(0,E [π(X)(1− F (u1 | X)) | s]) + max(0,E [π(X)F (u1 | X) | s])

With these objects, we can compute the difference in expected outcomes between playing

the two games for a player with a fixed signal s. We are able to sign this difference, in favor

full disclosure, under an important special case.

Proposition 4 When t2 > u1, the expected value of playing the full disclosure game is larger
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than the expected value of playing the complete secrecy game, for all signals s:

V Full Disclosure(s) ≥ V Complete Secrecy(s)

We provide a full proof of this in Appendix C, and provide a sketch here, by verifying the

assertion for each relevant range of signal realizations. Firms with especially high signals

will drill in either game, so their payoffs are identical. Firms with especially low signals will

only drill in the FD game, and when they do they earn positive profits, so they must strictly

prefer the FD game. Firms with signals that are high enough to drill early in the CS game

but wait in the FD game must be better off in the FD game by revealed preference. That

leaves firms with signals that are too low to drill early in either game, but high enough to

drill after waiting in both games. For these signals, which lie in [u2, u1], under our condition

that u1 < t2, the probability that a player drills after waiting in the complete secrecy game,

conditional on X, is always higher than the probability that the same player drills after

waiting in the full disclosure game. This is because u1 < t1 and because signals in this

range can’t do no news drilling in the FD game. When drilling is worthwhile (X ≥ x∗), this

additional chance of drilling in CS is good, and when its not, it is bad. However, even at

the most positive signal realization in this region (s = u1), we know that there is enough

probability mass on X to the left of x∗ to make this difference negative in expectation

(otherwise, a firm with signal u1 wouldn’t strictly prefer FD). Thus, all signals weakly prefer

the FD game to the CS game.5

When the above condition on u1 and t2 fails, it is still possible that that equilibrium

payoffs are higher under FD information policy than CS policy. When that occurs, it will

not necessarily be the case that all signals weakly prefer FD to CS. Instead, as we describe

in the proof in the appendix, there will be a range of intermediate signals that prefer CS to

FD, and as long as this range is sufficiently small, average welfare will still be in favor of FD.

However, it is possible to construct environments in which u1 ≥ t2 and average equilibrium

payoffs are higher under CS than FD.6

2.4.1 When is u1 < t2?

Given that it is sometimes possible to easily rank the two games in expected value terms,

it is worth investigating the conditions that could lead to this special case. Intuitively, this

5We can use similar logic to show that equilibrium payoffs in the CS game is larger than single agent
payoffs. See Online Appendix B.1

6For example, suppose logX ∼ N(0, 1), signals are given by si = logX + εi, with ε ∼ N(0, 42) and
independent of X. Additionally, assume that the value of output is 1 and the fixed cost of drilling is equal
to exp(0.5), so that the unconditional average well has zero profits. Then for δ ≤ 0.80, we will have u1 < t2.
However, we’ll still have Es

[
V Full Disclosure(s)

]
> Es

[
V Complete Secrecy(s)

]
for values of δ up to 0.97. Once

δ > 0.97, we’ll have the opposite.
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must occur when firms are not especially patient, as u1 and t1 are both increasing in δ, while

t2 is decreasing in t1. When δ is small enough, t1 will be small, which requires that t2 be

large. However, it is always the case that u1 < t1, so a small enough δ will guarantee u1 < t2.

We formalize this here:

Proposition 5 Fix a distribution of X, a conditional distribution of signals F (· | ·) satis-

fying the MLRP, and a monotonically increasing profit function π(·) that crosses zero once.

Then there is always a 0 < δ < 1 such that for all δ < δ, the equilibrium values of u1 and t2

when the discount factor is δ satisfy u1 < t2.

See Appendix D for a proof.

3 Partial Disclosure Policies

We define a partial disclosure (PD) game, with the threshold Z, as a game in which a firm

who waits learns additional information in the second period with positive probability. This

information takes a simple form: if the rival firm drills in the first period, the laggard firm

learns whether the true value of X is at least Z (good news), or below Z (bad news). If

neither firm drills (no news), there is no additional information in the second period. Partial

disclosure games nest both the full disclosure game, where Z = x∗, and the complete secrecy

game, where Z =∞.

3.1 Maximum nondistortionary disclosure

We provide an abbreviated analysis of the symmetric equilibrium of PD games by starting

with interesting special case. To do this, we define the value of waiting in a partial disclosure

game with threshold Z, when the equilibrium first period cutoff is v1(Z), as:

W (v1(Z), Z) = Wgood(v1(Z), Z) +Wbad(v1(Z), Z) +Wnone(v1(Z))

where

Wgood(v1(Z), Z) = E [I(X ≥ Z)π(X)(1− F (v1(Z) | X)) | v1(Z)]

Wbad(v1(Z), Z) = max(0,E [I(X < Z)π(X)(1− F (v1(Z) | X)) | v1(Z)])

Wnone(v1(Z)) = max(0,E [π(X)F (v1(Z) | X) | v1(Z)])

The equilibrium first period cutoff signal must satisfy the usual condition:

δ−1E [π(X) | v1(Z)] = W (v1(Z), Z)
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Though we can directly solve for the equilibrium v under any specific choice of Z, we

can also ask whether there is a Z that satisfies this equilibrium condition at a specific signal

v = v1(Z). Here, we will focus on finding a Z such that v1(Z) = u1, the first period cutoff

under CS. This particular disclosure threshold is interesting because we know average welfare

under a partial disclosure game with a first period cutoff equal to u1 must be no lower than

average welfare in a complete secrecy game. The two games have the same first period

cutoffs, so any difference in welfare comes from firms who wait, and this is the same set of

firms (signals) in both games. However, firms who wait in a partial disclosure game with a

first period cutoff u1 receive no less information than they do in a complete secrecy game,

and unless Z = ∞ or Z = 0, they receive strictly more. Thus the value of waiting in a

partial disclosure game with a first period cutoff equal to u1 can’t be lower than the value

of waiting in the complete secrecy game, for firms who strictly prefer waiting.

As we show below, this Z exists, and u1 is the first period cutoff for all values of Z at or

above it.

Proposition 6

1. The solution, in Z, to 0 = E [I(X ≤ Z)π(x)(1− F (u1 | x)) | u1] exists, is finite, and is

greater than x∗. Call this solution Z.

2. For Z = Z, there is a symmetric equilibrium in cutoff strategies in which the first

period cutoff, v1(Z), is equal to u1.

3. For Z > Z, the first period cutoff is also equal to u1.

To prove items 1 and 2, recall that in the complete secrecy game, a firm with signal u1 can

profitably drill after waiting if its rival drills first. That is, drilling under the knowledge of (a)

your own signal is u1 and (b) your rival’s signal is at least u1, is profitable. We can partition

this information set, in which drilling is profitable on average, into two pieces: when X ≥ Z,

and when X < Z, for any choice of Z. Drilling will always be profitable under the X ≥ Z

partition, and for high enough Z, drilling can be profitable in the X < Z partition, for

example, when Z = ∞. However, drilling may be unprofitable in the X < Z partition if Z

is low enough (e.g., it must be unprofitable when Z = x∗). This means that there must be

some intermediate level of Z, which we define as Z, at which drilling has exactly zero profits

in the X < Z partition. Because there are no profits to drilling in the X < Z partition, all

of the profits to drilling after waiting in a complete secrecy game must be coming from the

X ≥ Z partition. However, these partitions are exactly the information structure available

after waiting in a partial disclosure game with threshold Z, so u1 must be the first period

cutoff for such a game.
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To prove item 3, note that since a firm with signal u1 is indifferent between drilling or

not when it learns that its rival’s signal is at least u1 and X < Z, the same firm will strictly

prefer to drill when it learns that X < Z for values of Z > Z. Thus, a firm with signal u1

will drill after waiting if it sees its rival drill first, regardless of whether X is above or below

a threshold Z > Z. We also know that a player with signal u1 won’t drill after observing

its rival’s signal is smaller than u1. As a result, the value of waiting in a partial disclosure

game with Z > Z for a player with signal u1 is identical to the value of waiting in a complete

secrecy game, and we already know that is equal to δ−1E [π(X) | u1]. This means that for

Z > Z, we must have v1(Z) = u1.

We call Z the maximum nondistortionary disclosure (MND) threshold because disclosure

above this point has no consequence on the equilibrium first period cutoff signal. Z is the

most that can be disclosed about X without increasing free-riding from the level attained in

CS.

Despite the fact that the first period cutoff remains u1 for any Z ≥ Z, it is nevertheless

the case that behavior in the second period does depend on the specific value of Z.

Proposition 7

1. The solution, in v, to 0 = E [I(X ≤ Z)π(x)(1− F (u1 | x)) | v] exists, and is the mini-

mum signal at which players who wait will drill after learning X < Z (bad news). Call

this cut-off signal v3(Z).7

2. For Z ≥ Z, v3(Z) ≤ u1, so some signals that wait will drill after bad news.

3. For Z ≥ Z, all signals s < u1 will drill after learning X > Z (good news).

4. For Z ≥ Z, no signals s < u1 will drill after observing their rival did not drill (no

news).

5. For Z ≥ Z, average player welfare is strictly decreasing in Z.

We provide proofs in appendix E.1.

Maximum nondistortionary disclosure (Z) thus provides valuable information in envi-

ronments that are currently operating under complete secrecy, with no equilibrium “cost.”

That is, a regulator currently collecting information on outcomes but not disclosing any

information could instead disclose whether X ≥ Z or not. The above results show that this

would generate strictly positive welfare gains to players with pessimistic signals, while main-

taining investment incentives for players with optimistic signals, and thus leaving free-riding

7We choose to call this v3(·) in order to reserve v2(·) as the label for a no-news drilling cutoff signal in
the next section.
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leaving unchanged. In section 5, we compute the MND thresholds in Pennsylvania and West

Virginia and measure the counterfactual gains to using these policies in place of complete

secrecy.

3.2 Partial disclosure for Z < Z

At lower levels of Z, equilibrium play no longer involves a first period cutoff equal to u1.

Instead, the entire equilibrium structure depends on the level of disclosure.

Proposition 8

1. For x∗ ≤ Z < ∞, there is a symmetric equilibrium in cutoff strategies in which the

first period cutoff, v1(Z), is non-increasing in Z. For Z ≥ Z, v1(Z) = u1. For Z < x∗,

v1(Z) is non-decreasing in Z.

2. For x∗ ≤ Z < Z, the “bad news” cutoff v3(Z) ≥ v1(Z), so there is never any bad news

drilling in equilibrium.

3. If there is no news drilling in the full disclosure game (t1 > t2), then there is a threshold

Z̃, with x∗ ≤ Z̃ < Z, such that when x∗ ≤ Z ≤ Z̃, there is a “no news” second period

cutoff v2(Z) < v1(Z), and players with signals between v2(Z) and v1(Z) will drill after

waiting and learning that their rival waited as well.

4. At Z = x∗, v1(Z) = t1 and v2(Z) = t2.

Proofs for these results are provided in appendix E.

Proposition 8 shows how more disclosure (lower Z) implies more free-riding (higher

v1(Z)), a generalization of the result that u1 < t1. The fact that there is no bad news

drilling in partial disclosure games with thresholds below Z means that the structure of par-

tial disclosure equilibrium behavior is similar to full disclosure behavior, even though “bad

news” may still reflect a profitable state of the world (e.g., when x∗ < X < Z). Similarly,

like some full disclosure games, partial disclosure games can exhibit no news drilling.

As in our comparison between full disclosure and complete secrecy, we can provide a par-

tial characterization of the welfare differences between partial disclosure games with different

disclosure thresholds.

Proposition 9

1. Average player welfare is increasing in Z for Z ∈ [0, x∗].

2. If there is some no-news drilling when Z = x∗, then average player welfare is decreasing

in Z for Z ∈ [Z̃,∞].
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3. If there is no no-news drilling at Z = x∗, then average player welfare is maximized at

Z = x∗.

The mechanisms behind these results are similar to the logic in the proof for Proposition

4, and we provide proofs in the appendix. Proposition 9 shows that optimal disclosure is

either at full disclosure (when there is no no-news drilling in FD) or somewhere between full

disclosure and Z̃.

4 Empirical application

The early years of the shale boom provide a good setting to estimate the impact of disclo-

sure policy in a high stakes environment with uncertain investment outcomes. While the

existence of shale formations had been known since at least the 1980’s, they were regarded

as prohibitively expensive to exploit, and thus the exact levels of economically recover-

able hydrocarbons at each location remained unknown. The rapid maturation of hydraulic

fracturing at the turn of the century, combined with the emergence of horizontal drilling,

abruptly changed this predicament, unleashing a wave of shale exploration and development.

We focus on the Appalachian shale basin, where two of the most active gas plays in

the world over the past two decades, the Marcellus and the Utica, underlie two states with

starkly different disclosure policies during this time period: Pennsylvania and West Virginia

(Figure 1).8 In this section, we first review the institutional and policy background in these

states. We then describe the data and relate it to the theoretical model presented above,

and present some initial comparisons of investment across these states.

4.1 Background

Oil and gas investment involves two primary phases: leasing, in which firms acquire the right

to explore from landowners overlying potential petroleum reservoirs, and drilling, during

which firms decide whether to drill into land they have leased.

In the Appalachian shale basin, almost all mineral rights are privately held. Unlike

the American west, these rights are delineated by irregular shapes, and their ownership is

relatively dispersed. As described in Covert and Sweeney (2019), the private market for

mineral leases is often informal and decentralized. As a result, the ownership of mineral

leases is often quite disaggregated, with many firms owning mineral leases in the same small

geographic area. Once a firm acquires a mineral leases from a landowner, it has a finite

8These shale formations also underlie Ohio. Ohio has a 6 month secrecy period, which is considerably
shorter than the typical length of a mineral lease, so this also amounts to a full disclosure policy. However,
there is essentially no shale exploration in Ohio prior to 2010, when our sample ends. We therefore exclude
Ohio from all of our analysis.
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Figure 1: Appalachian Shale Plays

Shale well drilling (red dots) in Ohio, West Virginia, and Pennsylvania, between 2004 and 2020, relative to

the extents of the Marcellus and Utica shale plays.

amount of time to drill a well and establish whether it is productive. This “primary term”

is generally three to five years.

In order to drill, firms must acquire a drilling permit from a state regulator, and the

existence of these permits is generally public information. After receiving permission to

drill, a firm will hire a drilling rig and hydraulic fracturing crew to visit its lease and develop

the well. The physical scale of drilling and hydraulic fracturing is large enough that the

decision to drill is also effectively public information. Finally, after a well is drilled and

fracked, the firm will start producing from it, and regulators will collect records from the

firm about what occurred during drilling and fracking (i.e., how long did it take, at what

depths did the drilling rig encounter each formation, etc.). At this point firms are also

required to report production outcomes to regulators.

The Marcellus and Utica shale basins span parts of both Pennsylvania and West Virginia,

and, in both of these states, firms are required to submit these drilling and fracking reports

to regulators within 90 days. In West Virginia, regulators make these reports available after

1 year. Prior to 2011, Pennsylvania’s regulators allowed for substantially more secrecy. All

well-level records, including drilling reports and production outcomes, were kept secret for

five years. In May 2010, the Pennsylvania State Legislature passed Senate Bill 297, a set of
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amendments to the original Pennsylvania Oil and Gas Act. The new law provided for semi-

annual, instead of annual reporting, and, crucially, repealed Pennsylvania’s secrecy statute

entirely. All existing production and drilling information held under the old secrecy rule was

made public shortly after the law went into affect in November 2010.

Apart from disclosure policy, these two states differ in another important dimension.

West Virginia imposes a 5 percent tax on oil and gas revenue. Initially, Pennsylvania did

not tax oil and gas production, and this difference confounds a simple comparison of activity

across the two periods when the secrecy policies differ prior to 2011.9 In February 2012, it

implemented an annual per-well fee, which is thought to increase overall costs by about 5

percent. The fact that this change came so quickly after the repeal of its secrecy policy also

confounds a difference in difference estimation strategy.10

4.2 Data

We acquired data on leasing, drilling, and production from DrillingInfo (DI), a major com-

mercial provider of information to the oil and gas industry.11 For each lease, DI provides a

spatial representation of the covered minerals, the date it was signed, the firm it was signed

with and the length of the lease’s primary term. DI collects this information from county

courthouses, and DI’s data covers most (but not all) counties overlying active portions of

the Marcellus and Utica shale plays. In all the following analysis, we exclude counties not

covered by DI.

We combine this lease data with DI’s comprehensive drilling and production data. Drilling-

Info collects this information from state oil and gas regulators and organizes it into a standard

format. The DI drilling data data covers about 90,000 wells drilled between 2000-2016. For

each well, we observe its GPS coordinates, the date it was drilled, the firm that drilled it,

the well’s target formation (ie “Marcellus”), whether the well was a horizontal well (and thus

likely to have received a hydraulic fracturing treatment) or a vertical well. For every well,

we also observe all subsequent oil and gas production.

4.3 Sample construction

The model presented in section 2 envisions two identically sized leases, physically remote

from other sources of informative drilling activity, each of which is just large enough to

support a single well. While this theoretical setup provides a useful setting to study the

role of incentives and information in mineral exploration, it is unfortunately far from reality.

Landownership is quite dispersed in the Appalachian basin, and this fact is reflected in the

9Brown et al. (2020) estimate the impact of state hydrocarbon taxes on extraction.
10Black et al. (2018) study the impact of introduction of the well fee in Pennsylvania.
11Recently DrillingInfo has re-branded itself as Enverus.
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size distribution of our lease data. The median lease is just over 3 acres, well below the

approximately 80 acres needed to drill a single horizontal well at the conventional length of

5,000 feet.

Because the majority of leases are far too small to be drilled on their own, oil and

gas companies frequently agglomerate adjacent leases into a single drilling permit (called a

“unit”), and it is these pools of leases which, in theory would match the unit of observation

in the models of the previous section. However, unlike lease, drilling, or production data,

there are no administrative pooling records in any state in the Appalachian basin, so it is

not possible to measure outcomes at the unit level. In order to measure outcomes that likely

arise from this pooling process without having data on it, we construct an artificial grid of

1-mile by 1-mile squares, each of which could potentially contain a drilling unit.12 In all the

analysis that follow, we measure outcomes at the grid level, treating each grid as a single

player’s manifestation from one version of the game.

Having constructed potential drilling opportunities, we next identify grids that experience

enough leasing activity to be drilled. In our main specification, we assume that a grid

becomes “active,” and thus can be drilled, once 33% of its area has been leased. Although

33% of a square mile is a bit more than twice as much land that is needed to drill a single

well, as we mentioned above, lots of leasing in this context is dispersed, and so grids with

exactly 80 acres leased will not necessarily have 80 contiguous acres leased. We view this

kind of threshold assumption as a reasonable compromise between excluding grids that may

indeed have enough contiguous acreage to be drilled but not enough to satisfy this screen,

and including others that pass the screen but nevertheless don’t have 80 contiguous acres.

The results we report are very similar to those we obtain if we define a grid as active once

it instead reaches 25% or 50% leased.

Most leases in this setting have 5 year primary terms, and thus will be active for 5 years

after they reach the 33% leasing threshold. In grids that reach this threshold after 2005,

firms will be able to drill during primary term after Pennsylvania’s change in its information

policy. As a result, drilling behavior in these grids is unlikely to be accurately explained by a

single disclosure model. To avoid this, in our structural analysis, we will focus exclusively on

grids that reach the 33% threshold by the end of 2005, and measure drilling outcomes on each

grid until the end of 2010. In early 2011, Pennsylvania posted the production information

for all of its previously drilled wells online.

Finally, we will ultimately focus our attention on areas of Pennsylvania and West Virginia

that firms likely had a common set of pre-existing knowledge about. Prior to the start of

121 square mile corresponds to a “section,” or 640 acres. In many other states, sections serve as predefined
drilling opportunities; for example, Louisiana (Herrnstadt et al., 2020).

20



the shale boom, the only publicly disclosed geological data characterizing the Marcellus

and Utica shale basins was summarized in Charpentier et al. (1993). This U.S. Geological

Survey report describes the results of the U.S. Department of Energy funded work done by

the Eastern Gas Shales Program in the late 1970s and early 1980s, which was tasked with

measuring the geological conditions and underlying resource quality of various American

shale basins. The USGS report includes a map which divides the entire Appalachian basin

into several regions within which geological conditions and resource quality were thought

to be similar, which we recreate in Figure O.1. We focus our analyses on the parts of

Pennsylvania and West Virginia covered by two of these regions, “Gas Plays” 12 and 13.

The two regions were estimated to have similar average gas production potential, and they

are the only regions which span both states.

Table 1 presents grid-level summary statistics. In the first two columns, we include all

grids which ever become active (33% leased) by 2020. Below the grid counts, we report

summary statistics on drilling activity that occurs prior to 2011, when Pennsylvania changes

its disclosure policy. We see that only 6% of Pennsylvania and West Virginia grids have any

drilling by this point, and in both states most of this drilling is “late,” occurring after 2008.

Wells in Pennsylvania produce nearly three times as much output as wells in West Virginia

and earn 2.5 times as much revenue.

In the rightmost columns of the table, we restrict the sample grids to those that become

active by the end of 2005, and which lie in the relevant, shared, gas regions presented in

Figure O.1. On this sample, which is approximately 10 percent of the larger population in the

left-most columns, slightly more than 8 percent of grids drill by the end of 2010. However,

in Pennsylvania, the majority of these grids drill “early,” before 2009, while opposite is

true in West Virginia. This relationship matches one of the core predictions of section 2:

drilling happens earlier under full disclosure. Unlike the full population, in this sample,

where underlying geological quality is likely similar across the two states, Pennsylvania wells

produce less output and earn less revenue.
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Table 1: Grid summary stats

All Grids Main Sample

PA WV PA WV

Number of square mile grids
N 10322 2844 1227 284

Mean (sd)
Drilled 0.063 (0.24) 0.058 (0.23) 0.083 (0.28) 0.081 (0.27)
Drilled Early 0.016 (0.12) 0.02 (0.14) 0.051 (0.22) 0.025 (0.16)
Wells 0.16 (0.85) 0.12 (0.63) 0.24 (1.1) 0.23 (0.98)
Output/ Well (bcf) 3 (3.2) 1.3 (1.5) 1.2 (1.2) 1.7 (1.6)
Price ($/mcf) 3.4 (0.7) 3.6 (1.1) 3.8 (0.86) 3.3 (0.48)
Revenue / Well (millon $) 9.3 (9.8) 4 (4.5) 4 (3.8) 5.4 (5)

States are divided into square mile grids. In the first two columns (labeled “All Grids”), we include all
grids we ever observed at least 33% leased by the end of 2020. In the last two columns, the sample is
restricted to grids that are 33% leased by 2005, overlying Gas Plays 12 and 13 in Figure O.1.
Drilling outcomes restricted to wells spud by the end of 2010. “Drilled Early” refers to wells spud by
the end of 2008.

4.4 Border comparison

The summary statistics in the two rightmost columns of Table 1 suggest that Pennsylvania,

which was governed by complete secrecy prior to 2011, drilled earlier but less efficiently

than West Virginia, which was governed by full disclosure. While this is consistent with the

model’s core prediction, the comparison is complicated by the fact that, while these states

share the same underlying shale formations, ex post resource quality within these formations

is not constant, and as a result may be different, on average, between the two states. In

this section, we make comparisons between grids in Pennsylvania and West Virginia that

are restricted to lie within a narrow bandwidth (10 miles) around the Pennsylvania border

(Figure O.2). This restriction ensures that the underlying rock quality is similar across the

two states.

Table 2 presents the results. In column 1, we include all grids within 10 miles of the

Pennsylvania border that become “active” (33% leased) by the end of 2020.13 Row 1 contains

a simple projection of an indicator for whether the grid was drilled by the end of 2010 onto an

indicator for the state of Pennsylvania. On this sample, Pennsylvania grids are 2 percentage

points less likely to drill, but are 0.7 percentage points more likely to drill “early” (prior to

2009). In row three we perform a Poisson regression with the number of wells per square-mile

13Grids less than one mile away are excluded because the relevant information environment is not obvious;
the outcomes in grids less than 1 mile south of the border may be knowable by firms less than 1 mile north
of the border.
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as the outcome. Pennsylvania grids drill 11% fewer wells, but obtain 80% less output per

grid.
Table 2: Border Regression Results, 10 Mile Radius

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Linear Drilled -0.020 -0.012 0.015 0.016 0.079 0.086
(0.008) (0.013) (0.013) (0.012) (0.030) (0.033)

Drilled Early 0.007 0.025 0.035 0.031 0.084 0.092
(0.004) (0.008) (0.008) (0.007) (0.022) (0.025)

Poisson Wells -0.111 0.234 0.664 0.741 0.892 1.175
(0.243) (0.246) (0.244) (0.253) (0.397) (0.401)

Output -0.797 -0.499 -0.020 0.047 0.238 0.414
(0.295) (0.296) (0.295) (0.311) (0.438) (0.429)

Grids: PA 2232 993 708 708 242 242
Grids: WV 1016 625 625 625 111 111
Leased By none 2010 2010 2010 2005 2005
Matching Vars None None Idx Idx, Year Idx Idx, Year

Sample restricted to grids between 1 and 10 miles of the border. All outcomes discounted to the start
of the lease sample, January 2003. Wells are restricted to shale wells drilled by the end of 2010. Drilled
“early” refers to wells drilled by the end of 2008. Output refers to total discounted output within the grid.
In models 3 through 6, the sample is first balanced across Pennsylvania and West Virginia using coarsened
exact matching. The Matching Vars row indicates whether observations were matched spatially using their
position along the Pennsylvania border (“Idx”), and the year the grid became active.

In column 2, we restrict the sample to grids that became active by 2010. This cuts more

than half the sample. However, within the set of grids sufficiently leased for mineral explo-

ration leading into the shale boom, the estimated difference in early drilling in Pennsylvania

more than doubles. In this specification, Pennsylvania drills 23% more wells but obtains 50%

less output. In column 3 we use coarsened exact matching (CEM, Iacus et al. (2012)) to

match grids spatially based on their position along the Pennsylvania border (denoted “Idx”

in the table). The motivation here is that, even in this narrow bandwidth, the underlying

rock quality is (ex post) quite different at different points along the border, and we want

to ensure balance across the two states in latent quality. Within this sample, Pennsylvania

is more likely to drill across both periods, drilling more than 60% more wells than West

Virginia, but obtaining weakly less output. In column 4 we match on both the border index

and the year the grid reaches 33% leasing.

In column 5 of Table 2 we restrict the sample to grids that become active by the end

of 2005. The motivation for this restriction is that, given typical lease term lengths, it is

likely that we observe both early and late drilling before the Pennsylvania policy changes in
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Figure 2: Border radius sensitivity

2011. Finally, in column 6 we match on both border index and lease year on this restricted

sample. Across both of these matched samples, the incidence of early drilling and the number

of wells per square mile is much higher. However, unlike the raw comparisons in Table 1,

Pennsylvania wells are much less productive, consistent with the model’s predictions.

In Figure 2 we explore the sensitivity of the Poisson results to the border radius imposed.

The sample is restricted to grids leased by 2005, matched on the border index (corresponding

to column 5 in Table 2). The bottom panel demonstrates the rapidly diminishing sample as

we narrow the bandwidth. The top panel presents point estimates and confidence intervals

for the well per square mile and output Poisson regressions. While the confidence intervals

are wide, it is clear that Pennsylvania drills many more wells, but generates proportionally

much less output than is implied by its additional drilling.

While these comparisons of drilling behavior and subsequent production provide sug-

gestive evidence that information disclosure policy can affect real outcomes in a manner

consistent with the model in section 2, they lack a traditional causal interpretation because
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of other differences in economic incentives between Pennsylvania and West Virginia. Al-

though underlying resource quality is unlikely to meaningfully change at the border, other

policies, aside from information disclosure, do. The most salient observable difference is

taxes: West Virginia has a 5% tax on oil and gas production, as well as partially offsetting

investment tax credits for drilling new wells. In contrast, during this time there were no taxes

or tax credits associated with oil and gas production in Pennsylvania. These tax differences

are likely to be economically meaningful, especially in settings like this one where drilling

is relatively rare. It is also possible that key unobserved factors, like drilling costs and the

precision of pre-drilling signals, may differ between the states.

5 Structural estimation

In this section, we estimate models of drilling under the information policy in each state,

full disclosure in West Virginia and complete secrecy in Pennsylvania. We incorporate the

important differences in production tax treatment into the underlying profit functions, and

estimate the drilling costs and signal variances that would rationalize the outcomes that we

observe in each state. With estimates of these primitives in hand, we compute the average

welfare under alternative disclosure policies, holding other factors fixed, to characterize the

optimal disclosure policy in each state and quantify its benefits relative to other disclosure

policies.

The data we use in estimation consists of the square mile grids in Pennsylvania and West

Virginia which were active by the end of 2005, and which lie in either Gas Play 12 or Gas

Play 13 from the Charpentier et al. (1993) map recreated in Figure O.1. This sample is

described in the right columns of Table 1. We assume that each square-mile grid constitutes

a random half of a waiting game, so that the outcome in a grid represents one firm’s drilling

choice. Figure 3 presents a map of sample grids and whether drilling is observed by the end

of 2010.

As we describe below, our model delivers probabilities for each of these outcomes, con-

ditional on the true resource quality X in a grid. For grids that are drilled during our time

period, X is observed.14 However, for grids that aren’t drilled until later, or not at all, this

information is missing. To overcome this, we’ll do two things. First, for all drilled grids,

including those drilled after our time period ends, we’ll adjust the observed X values for the

progress in technology that occurred. We do this by regressing each well’s realized output

onto a dummy variable for horizontal vs. vertical drilling, a logarithmic term for the hor-

14Technically, we observe a fraction of eventual production, as most drilled wells in this sample are still
producing to this day. We convert this incomplete history of production into a discounted forecasted value
using an engineering model. See Appendix C.1 for details.
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Figure 3: Sample grids and drilling

Leased grids are 33% leased by the end of 2005. Drilling indicates grids which have a shale well by the end of 2010.

izontal length of the well that was drilled, and fixed effects for the year in which drilling

takes place.15 We then compute the predicted output of that well, assuming it was drilled in

a fixed year (we use 2009), with a fixed horizontal length (we use the median value in 2009),

using our regression coefficients and that well’s regression error. This procedure delivers X

values for each well that are normalized to the technology available during our time period.

Next, we use this well-level normalized production data to estimate the average resource

quality in each square mile grid with a geospatial krigging procedure. In the first step of

this process, we compute the empirical spatial covariance between wells using the location

of each well and our estimate of its normalized realized production. In the second step, we

use this covariance function to compute predicted average resource quality at the centroid of

each of our square mile grids.16 At the end of this process, we have a prediction of average

15We use Poisson pseudo maximum likelihood regression, as opposed to least squares, in order to capture
the proportional nature of technical change, and account for the fact that there are some dry holes in our
data.

16This procedure is similar to the approaches used in Covert (2015), Agerton (2020), Hodgson (2021), and

26



resource quality, X, for each grid in our sample, including grids that have not yet been

drilled by the end of 2010. Figure O.3 presents a map of these predictions, and Figure A.1

presents the distribution of predicted output for the estimation sample. Across states, the

two distributions share a lot of overlap. However the Pennsylvania distribution has a much

longer right tail than West Virginia.

5.1 Empirical model

For each grid, we observe X ∈ (0,∞), the true resource quality at the potential drilling

location, and the observed drilling outcome D. Drilling outcomes take on three possible

values: D = “early” means that the location was drilled in the first period of a game,

D = “late” means the location was drilled in the second period of a game, and D = “never”

means the location was not drilled before the end of 2010.

To translate this data into our model, we make two functional form assumptions. First,

we assume that profits are linear in X:

π(X) = X(P (1− royalty− tax)− o&m)−K

We compute the output price P as the average realized spot natural gas price over the life of a

typical well in our sample.17 We set P = $3.1/mcf, which is the median realized price for wells

drilled during 2009. Royalty reflects the share of revenue that must be paid to landowners.

In the lease data for this sample, the average royalty rate is 14%, and this is consistent across

states, so we impose that value in estimation. As described above, production taxes in PA

are 0%, while they are 5% in WV. We subtract operating and maintenance costs of $1/mcf

based on estimates from publicly traded oil and gas company financial reports.18 This leaves

the drilling cost K as the only parameter in the profit function that we need to estimate.

Our second assumption is that the distribution of signals, conditional on the true resource

quality, takes the “signal plus noise” form. We assume that a signal s can be written as

Herrnstadt et al. (2020).
17For details, see Appendix C.1.
18The largest publicly traded firms that were active in the Appalachian basin during our time period

were Chesapeake, Range Resources, EQT, and Cabot Oil & Gas. While none of these companies reported
lease operating costs specific to the Appalachian basin, together their reports are supportive of $1 per
mcfe as a sensible operating cost. For example, in 2010, Chesapeake reported a total of $1.30/mcfe in
“production expense per mcfe” and “General and administrative expense per mcfe.” In the same year,
Range Resources reported a total of $0.72/mcfe in “lease operating” and “workover” expense. EQT’s lease
operating expenses are considerably lower in that year, at $0.24/mcfe, but their operations include many
conventional gas plays with lower operating costs. However, at the time EQT also operated a gas gathering
and processing business, serving other producers in the Appalachian basin and other places. That business
unit simultaneously reported $1.11/mcfe in “average gathering” fees. Finally, Cabot Oil & Gas reported
$0.45/mcfe for their “North” operations, which include both Appalchain basin assets, as well as assets in
the Rockies.
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s = logX + ε, with ε independent of X, and distributed normally, with zero mean and

standard deviation ν. Because the normal distribution has a log-concave density, the joint

distribution of s and X satisfies the monotone likelihood ratio property, a key assumption

in the model we’ve developed above.19 Thus, a second primitive we must estimate is ν.

Based on these assumptions, we can write the probability that we observe early drilling,

conditional on X, in each game, as:

Pr(D = early | X)CS = 1− Φ

(
u1 − logX

ν

)

Pr(D = early | X)FD = 1− Φ

(
t1 − logX

ν

)
where Φ(·) is the CDF of a standard normal random variable. Similarly, we can write the

probability of observing late drilling, again conditional on X, as:

Pr(D = late | X)CS =

(
1− Φ

(
u1 − logX

ν

))
︸ ︷︷ ︸

Rival drills early

×
(

Φ

(
u1 − logX

ν

)
− Φ

(
u2 − logX

ν

))
︸ ︷︷ ︸

Own signal in late drilling range

Pr(D = late | X)FD = Φ

(
t1 − logX

ν

)
︸ ︷︷ ︸

Own signal too low to drill early

×
(

1− Φ

(
t1 − logX

ν

))
I(X > x∗)︸ ︷︷ ︸

Rival drills early and outcome is good

+

(
Φ

(
t1 − logX

ν

)
− Φ

(
t2 − logX

ν

))
︸ ︷︷ ︸

Own signal in no news drilling range

×Φ

(
t1 − logX

ν

)
︸ ︷︷ ︸

Rival waits

× I(t1 ≥ t2)︸ ︷︷ ︸
No news drilling possible

where x∗ = K
P (1−royalty−tax)−o&m

is the value of X at which drilling has exactly 0 profits.

Although we are specifically interested in estimating the primitives (ν,K), these proba-

bilities are a function of the equilibrium cutoff signal values. To estimate the value of the

primitives which best fit our data, we must compute the cutoff signals as a function of the

primitives. We do this using the empirical distribution of the predicted X’s in each state.20

For any conditional distribution of signals and any monotone profit function, we can solve

for the implied equilibrium cutoffs consistent with the empirical distribution of X. For ex-

19See, for example, https://sites.stat.washington.edu/jaw/RESEARCH/TALKS/

Toulouse1-Mar-p1-small.pdf. By the same logic, our assumption that ε is normally distributed
can be relaxed, at some computational cost, to an assumption that ε has some unspecified log-concave
density.

20See appendix C for details.
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ample, after substituting in our functional form assumptions for the conditional distribution

of signals and the profit function, we obtain the u1 condition for equilibrium first period

drilling in the complete secrecy game as:

0 =
1

N

∑
i

(P̃Xi −K)

(
1− δ

(
1− Φ

(
u1 − logXi

ν

)))
φ

(
u1 − logXi

ν

)

where P̃ is the output price net of taxes, royalty payments and operating expenses, Xi is

the i-th observed value of X in our sample and φ(·) is the density function for a standard

normal random variable. We construct similar expressions for u2, and for the cutoffs t1 and

t2 in the full disclosure game.

We maximize the likelihood of the observed distribution of (X,D) over different values

of ν,K, with an inner “fixed point” step in which we solve for the equilibrium values of

the game-specific signal cutoffs that are consistent with those parameters, using a numerical

root-finding routine.

5.2 Results

The first row of Table 3 reports state-specific estimates of the standard deviation of the

noise in firms’ signals, ν. In both states, our estimates suggest that signals are quite noisy,

though less so in Pennsylvania. The underlying distribution of log(X) in Pennsylvania has

a standard deviation of 0.54, so this estimate of ν implies that about 87% of the variation

in signals that Pennsylvania firms receive is noise.21 In West Virginia, where the standard

deviation of log output is smaller, but the ν estimate is higher, 99% of the variation in signals

that firms receive is noise. These high values for ν underscore the importance of accounting

for the information firms may receive about X after choosing to wait.

The second row of Table 3 reports estimates of the fixed cost of drilling, K. These point

estimates are comparable to estimates of drilling costs for Marcellus shale wells reported in

the U.S. Energy Information Administration (2016) drilling cost report. For the time period

we study, EIA’s estimate of drilling and completion costs ranges from about $3 to $6 million

per well. Our estimates suggest drilling costs of about $5 million in Pennsylvania, and a bit

under $4 million in West Virginia. One possible explanation for the lower drilling costs in

West Virginia is the presence of a Manufacturing Investment Tax Credit that is available to

natural gas producers in the state, specifically intended to offset up to 60% of a firm’s 5%

production tax liability.22

To assess the suitability of these models for explaining drilling behavior in their respective

21 1.4072

1.4072+0.542 ≈ 0.87.
22https://tax.wv.gov/Documents/TSD/tsd110.pdf
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states, we compare observed patterns of drilling to the fitted predictions under our parameter

estimates in the middle panel of Table 3. In both states, we are able to match the quantitative

features of drilling probabilities — that late drilling is less likely in Pennsylvania and more

likely in West Virginia — and our fitted probabilities are additionally close to their empirical

counterparts.
Table 3: Structural Model Parameter Estimates and Fit

Pennsylvania West Virginia

Parameters (Point Estimates, Standard Errors)
ν 1.407 0.208 5.914 2.419
K 4.937 0.159 3.876 0.059

Fit Statistics (Empirical, Fitted)
early 0.051 0.051 0.025 0.029
late 0.032 0.032 0.056 0.053

Sample Size
N 1,227 284
Negative Log-Likelihood 386.883 91.663

Pennsylvania sample estimated assuming a complete secrecy information policy. West Virginia
sample estimated assuming a full disclosure information policy. Both samples restricted to grids
that are 33% or more leased up by the end of 2005, and overlie Gas Play 12 or Gas Play 13,
from Figure O.1. The parameter ν has the same units as log output, while the parameter K is in
millions of dollars. Early drilling refers to the share of grids first drilled by the end of 2008, while
late drilling refers to the share of grids first drilled in 2009 or 2010.

Our parameter estimates are predicated on our assumption that drilling behavior in Penn-

sylvania is governed by CS information disclosure policies, while behavior in West Virginia

is governed by FD policies. We can test these assumptions by estimating ν and K in each

state under the opposite information policy, and use the method in Vuong (1989) to test

the hypothesis that our chosen policy fits the data better. In both cases, the log-likelihoods

of the data under our assumed information structure are higher than under the opposite

information structures, which means that our Vuong test statistics have “correct” sign. In

Pennsylvania, where we have a fairly large sample, we can reject both a a one-sided null

hypothesis that FD policy fits the data better than CS as well as the traditional two-sided

hypothesis that the two models fit the data equally well (p = 0.01). In contrast, in West Vir-

ginia, with about one fifth as much data, we fail to reject the null that the two informational

assumptions are the same.

With estimates of ν and K, we can evaluate the equilibrium consequences of counter-

factual information disclosure policies. In Figure 4 we plot out the equilibrium cutoffs of
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partial disclosure games, across an evenly spaced grid of disclosure thresholds, in each state.

The left-most part of each figure represents the value of playing an FD game, represented

as a partial disclosure game with disclosure at that state’s estimated x∗. The right-most

part similarly represents the value of playing a CS game, represented as a partial disclosure

game with disclosure at the maximum value of X observed for that state. The vertical black

line corresponds to the estimated maximum nondistortionary disclosure (MND) threshold

for the state. In Pennsylvania, the MND is 4.88 million mcf, which is the 95th percentile

of the unconditional output distribution, while in West Virginia, it is 4.87 million mcf, the

97th percentile.

The top panel shows these cutoffs for Pennsylvania, where the first period cutoff v1(Z)

always lies above the no-news cutoff v2(Z) for all Z, a condition which guarantees that full

disclosure is the optimal disclosure policy. The decrease in v1(Z) as Z gets large is limited

in Pennsylvania because our estimate ν is small. As a result, when a player receives a high

signal in Pennsylvania, there is a good chance that the signal is high because X is high.

Similarly, when a player waits and observes that its rival waited too, there is a good chance

that X must be low, and thus drilling after no news is unprofitable. This highlights that, all

else equal, a reduction in ν reduces the value of the information that can arrive if a player

waits. In contrast, in West Virginia, which we plot in the bottom panel, cutoff signals are

relatively high as a result of our much higher estimate of ν. For low disclosure thresholds,

we see that v2(Z) < v1(Z), implying that there is no-news drilling in West Virginia, which

would be absent in Pennsylvania. Higher values of ν increase the likelihood that both high

and low signals could be driven by noise, so a player who waits and learns that its rival has

waited as well places far less weight on the event that X is unprofitable than it would in

Pennsylvania.

In Figure 5 we plot out the ex ante average value of playing these partial disclosure

games.23 In both states, we estimate that the gains to moving from CS to FD are substantial.

In Pennsylvania, the ex ante value of play under FD is $67,806, while its $45,471 under

CS. This means CS information policies only generate 67% of the welfare that FD would.

In West Virginia the differences are even more stark, with CS only capturing 39% of FD

welfare. However, in both states, a maximum non-disortionary disclosure policy substantially

improves upon CS, capturing 85% of FD in Pennsylvania, and 63% in West Virginia.

As shown in Figure 4, our parameter estimates for both states generate equilibrium cutoff

signals under both games that satisfy the u1 < t2 condition that is at the heart of our proof of

Proposition 4. As a result, the plots in Figure 5 necessarily reflect that FD has higher welfare

than CS. Additionally, in Pennsylvania (but not West Virginia), it turns out that t2 > t1

23By ex ante we mean the expected value of playing a game before one’s signal is realized.
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Figure 4: Equilibrium Cutoff Signals Under Counterfactual Disclosure Policies

(a) Pennsylvania

(b) West Virginia

The solid red line is the first period cutoff, the dotted green line is the second period “no news” cutoff, and

the dash-dotted blue line is the second period “bad news” cutoff. The bad news cutoff is especially high

for low disclosure thresholds so it is not plotted for all values of Z in the figure. The black vertical line

represents the location of maximum non-disortionary disclosure.
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(there is no no-news drilling), so the reason why the top panel of Figure 5 is monotonically

decreasing is precisely the logic employed in the proof of Proposition 9.
Figure 5: Average Player Welfare Under Counterfactual Disclosure Policies

(a) Pennsylvania

(b) West Virginia

The black vertical line represents the location of minimal disclosure.

6 Conclusion

In non-cooperative settings with costly investment and information externalities, regulators

face a tradeoff when it comes to disclosing information on exploratory activities (or requiring

that it be disclosed). Disclosing investment outcomes disseminates socially valuable infor-

mation that can improve the efficiency of subsequent investment, but this prospect also

induces free riding. In a two-firm, two-period model, we characterize equilibrium behavior

and show how the resulting optimal disclosure policy depends on firms’ patience. Moreover,
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we establish that some amount of disclosure is free, in that it does not distort the timing of

early investment, but does increase the welfare from subsequent investment. Thus, if partial

disclosure is possible, complete secrecy can never be optimal.

We quantify the gains from optimal disclosure policy in the context of the Appalachian

shale boom. The rapid maturation of hydraulic fracking and horizontal drilling at the turn of

the century transformed the economics of this shale basin, but, in order to take advantage of

this new technology, exploration companies still had to figure out where to apply it.24 During

this time, Pennsylvania regulators allowed firms to keep their exploratory efforts secret,

while neighboring West Virginia disclosed this information to rivals almost immediately.

We show that, had Pennsylvania followed West Virgina’s lead, the private value of shale

exploration would have been 49% during this formative period. Consistent with this, in

2011 Pennsylvania abruptly ended its secrecy policy, and began fully disclosing oil and gas

exploration and production outcomes.

The oil and gas industry in noteworthy because disclosure is common. However there is no

economic reason why these lessons couldn’t be applied to other settings. Governments often

collect information closely related to investment outcomes for tax or regulatory purposes.

Our analysis shows that some of that disclosure could be free, and the returns to optimal

disclosure could be large.
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Appendix A Proof of Lemma 1

E [π(X) | Q = q,Q′ ≤ p] =

∫ ∞
0

π(x) Pr(X = x | Q = q,Q′ ≤ p)dx

=

∫∞
0
π(x) Pr(Q = q,Q′ ≤ p | X = x) Pr(X = x)dx∫∞
0

Pr(Q = q,Q′ ≤ p | X = z) Pr(X = z)dz

=

∫∞
0
π(x) Pr(Q = q | X = x) Pr(Q′ ≤ p | X = x) Pr(X = x)dx∫∞
0

Pr(Q = q | X = z) Pr(Q′ ≤ p | X = z) Pr(X = z)dz

=

∫∞
0
π(x)f(q | x)F (p | x) Pr(X = x)dx∫∞
0
f(q | z)F (p | z) Pr(X = z)dz

=

∫∞
0
π(x)h(x | q)F (p | x)dx∫∞
0
h(z | q)F (p | z)dz

=
E [π(X)F (p | X) | q]

E [F (p | X) | q]

The second line comes from the first as an application of Bayes’ rule. The third line comes
from the fact that signals are iid, conditional on X. The fourth line is cosmetic, chang-
ing “probabilities” to densities and distribution functions. The fifth line is an additional
application of Bayes’ rule, and the final line is a simplification of that result.
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Appendix B Proofs of the CS equilibrium
A player with this signal must be indifferent between drilling in the first period and waiting
until the next period to decide whether or not to drill:

δ−1E [π(X) | u1] = E [F (u1 | X) | u1] max

(
0,

E [π(X)F (u1 | X) | u1]
E [F (u1 | X) | u1]

)
+

E [1− F (u1 | X) | u1] max

(
0,

E [π(X)(1− F (u1 | X)) | u1]
E [1− F (u1 | X) | u1]

)
The first object on the right-hand side of this expression is the probability that your op-
ponent’s signal is less than u1 times the payoff to optimal behavior when it turns out that
your opponent’s signal is less than u1. Similarly, the second object is the probability your
opponent’s signal is greater than u1 times the payoff to optimal behavior when it turns out
that your opponent’s signal is greater than u1.

To simplify the right-hand side expression, note that the first maximum operator is
binding. That is, E[π(X)F (u1|X)|u1]

E[F (u1|X)|u1] < 0. Why? Suppose not. This is the expectation of π(X),
conditional on your signal being exactly u1 and the knowledge that your rival’s signal is less
than or equal to u1. Because the distribution of X conditional your and your rival’s signals
has the MLRP in both signals, we can apply Lemma 2. The “news” that your opponent’s
signal is less than or equal to u1 is worse than the news that your opponent’s signal is
greater than u1, so the expected value of π(X) conditional on your opponent’s signal being
below u1 is less than or equal to the expected value when your opponent’s signal is above
t1. Thus if we’ve assumed that E[π(X)F (u1|X)|u1]

E[F (u1|X)|u1] ≥ 0, then E[π(X)(1−F (u1|X))|u1]
E[1−F (u1|X)|u1] ≥ 0, too. In

that case, the right maximum of the right-hand side expression in the definition of t1 is also
non-binding. Then, the entire right-hand side of the t1 condition is simply E [π(X) | u1], the
undiscounted version of the left hand side. But the only way for that to hold is for δ = 1.
Thus, E[π(X)F (u1|X)|u1]

E[F (u1|X)|u1] < 0, and we can simplify our expression for 1 to:

δ−1E [π(X) | u1] = E [1− F (u1 | X) | u1] max

(
0,

E [π(X)(1− F (u1 | X)) | u1]
E [1− F (u1 | X) | u1]

)
We can do one more step of this process and simplify this even further. Suppose it was

the case that at the equilibrium value for u1, the remaining maximum was binding: the
expected value of π(X) conditional on your signal being u1 and the knowledge that your
opponent’s signal was bigger than u1 was negative. This would imply that the worse news,
that your opponent’s signal was only bigger than or equal to −∞ (what we effectively have
on the left hand side), must be at least as negative. However, the right-hand side is wrapped
inside a maximum operator, which does not fall below 0, so we have a contradiction. It must
be the case that E[π(X)(1−F (u1|X))|u1]

E[1−F (u1|X)|u1] ≥ 0, and we can simply to:

δ−1E [π(X) | u1] = E [π(X)(1− F (u1 | X)) | u1] (3)

A firm with the equilibrium cutoff signal u1 is indifferent between drilling today and
waiting until tomorrow to drill. If that firm waits, and does learn its rival drilled first, then
it drills as well. If it waits and learns its rival didn’t drill, it also won’t drill. Thus, if neither
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firm drills in the first period, there is no drilling in the second period.
A firm with signal s < u1 will wait to see what its rival does. As above, it won’t drill

after learning that its rival didn’t drill. But, if it does see its rival drill, and as such updates
its beliefs about X upwards, it is possible that it will drill in the second period. In order for
this to be profitable, the signal s must be high enough. In particular, we need s ≥ u2, given
by:

E [π(X)(1− F (u1 | X)) | u2] = 0. (4)

It is clear from this definition that u2 ≤ u1. If not, then the expected payoff to drilling with
signal u2 upon observation that a rival already drilled, and thus had a signal at or above u1,
would be larger than the same payoff with signal u1. However, u2 is selected to make this
payoff equal to zero, while we already saw that at u1, this payoff is positive. Thus, u2 ≤ u1.

Appendix C Proof of Proposition 4

To see why V Full Disclosure(s) ≥ V Complete Secrecy(s), we will examine the payoffs to signals
in each of the intervals contained in the partition −∞ < u2 ≤ u1 ≤ t1 < ∞. First,
note that firms with especially high signals s ≥ t1 drill early in both games, so for them,
V Full Disclosure(s) = V Complete Secrecy(s). Firms with moderately high signals, those with u1 ≤
s < t1, will drill early in the complete secrecy game, but will wait in the full disclosure game.
For this range of signals, we know that the discounted value of waiting under full disclosure
game is more valuable than drilling immediately, so we can conclude that V Full Disclosure(s) >
V Complete Secrecy(s). Players with especially low signals, s ≤ u2, will wait in either game.
However, a player with s < u2 in the complete secrecy game will never drill after waiting,
while a player with the same signal might efficiently drill after waiting in the full disclosure
game. Thus, for signals in this range, V Full Disclosure(s) > V Complete Secrecy(s).

Finally, consider the case where u2 < s ≤ u1. In this range, firms wait in both games, and
firms may drill in the second period in both games, so we must directly examine the expected
difference in the value of waiting between the games. Because we have assumed that u1 < t2,
a firm with a signal in this range will not do no-news drilling in the full disclosure game,
which allows us to simplify its value of waiting to:

WFull Disclosure(s) = E [max(0, π(X))(1− F (s1 | X)) | s]

With this simplification, we can write the difference between the expected value of waiting
in the two games as:

∆1(s) = WComplete Secrecy(s)−WFull Disclosure(s)

= E [π(X)(1− F (u1 | X)) | s]− E [max(0, π(X))(1− F (t1 | X)) | s]
= E [π(X) (I(X < x∗)(1− F (u1 | X) + (F (t1 | X)− F (u1 | X)))) | s]
= E [φ1(X) | s]

where x∗ is the value of output x for which π(x) = 0. For values of x < x∗, the function
φ1(x) < 0, and for values of x ≥ x∗, φ1(x) ≥ 0, so φ1(x) has a single crossing of 0 at the
point x = x∗. We already know that at s = u1, the value of drilling is equal to the value of
waiting in the complete secrecy game, but less than the value of waiting in full disclosure
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game, so ∆1(u1) ≤ 0. Firms with worse signals s < u1 put more probability mass on lower
values of X than firms with s = u1, so ∆1(s) ≤ 0 as well.25. Thus, for u2 < s ≤ u1 we have
V Full Disclosure(s) > V Complete Secrecy(s). This completes the proof.

N.B. When u1 ≥ t2, the above logic no longer holds. To see why, consider the difference
in the value of waiting for firms who can do no news drilling in the full disclosure game
(t2 ≤ s < u1):

∆2(s) = WComplete Secrecy(s)−WFull Disclosure(s)

= E [π(X)(1− F (u1 | X)) | s]− E [max(0, π(X))(1− F (t1 | X)) | s]− E [π(X)F (u1 | X) | s]
= E [π(X)(I(X < x∗)(1− F (t1 | X))− F (u1 | X)) | s]
= E [φ2(X) | s]

To characterize the function φ2(x), let x̃ be the value of x at which the functions 1−F (t1 | x)
(which is increasing) and F (u1 | x) (which is decreasing) cross, such that 1 − F (t1 | x̃) =
F (u1 | x̃). Then φ2(x) ≥ 0 for x ≤ min(x∗, x̃), and φ2(x) ≤ 0 for x > min(x∗, x̃). Thus,
φ2(x) is positive for low realizations of X and negative for high realizations. We already
know that ∆2(u1) = E [φ2(X) | u1] ≤ 0 by revealed preference: players with signal u1 would
rather wait than drill in the full disclosure game. However, unlike the case above, the single
crossing function φ2(x) is negative for good x’s and positive for bad x’s, so we can’t rule out
the possibility that there are signals s ∈ [t2, u1) for which ∆2(s) ≥ 0, who prefer a complete
secrecy information policy to a full disclosure policy.

Appendix D Proof of Proposition 5
We first prove that first period cutoffs are monotonically increasing in δ. Then, we show the
key impatience result.

D.1 FD and CS cutoffs are monotonically increasing in δ

To show that the both FD and CS cutoffs are monotonically increasing in δ, first note
that its impossible for either first period cutoff to be non-monotonic in δ. It it was,
then there would have to be two distinct values of δ, e.g., δ1 and δ2, with equal first pe-
riod cutoffs in, for example, the CS game, such that u11 = u21 = u. This would imply
δ1E [π(X)(1− F (u | X)) | u] = δ2E [π(X)(1− F (u | X)) | u], and this isn’t possible unless
E [π(X)(1− F (u | X)) | u] = 0, which cannot occur if there is to be any drilling at all, so u1
must be strictly monotonic in δ. A similar argument applies for the cutoffs in the FD game.

Next, note that in the limit as δ → 0, we must have u1 = s0, where E [π(X) | s0] = 0, while
in the limit as δ → 1, we must have u1 = s1, where E [π(X) | s1] = [π(X)(1− F (s1 | X)) | s1].
Because 0 = E [π(X) | s0] < E [π(X)(1− F (s1 | X)) | s1] = E [π(X) | s1], we must have
s0 < s1. This means u1 must be strictly monotonically increasing in δ.

In the FD game, in the limit as δ → 0, we also must have t1 = s0, where E [π(X) | s0] = 0.
However, in the limit as δ → 1, t1 becomes unbounded and tends to ∞, as there becomes
no delay cost to waiting. By the same logic as we saw in the CS case, this implies that t1
must be strictly monotonically increasing in δ.

25This essentially an application of Lemma 2 of Hendricks and Kovenock (1989)
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D.2 Proof of the impatience result

As we saw above, when firms are completely impatient, as δ → 0, t1 → s0. At this point, any
signal at which drilling after no news is profitable would have to be larger than s0, so we know
t2 > u1. At the other extreme, as δ → 1 and firms are perfectly patient, the first period cutoff
for FD tends to∞, as there is no delay cost for any signal to waiting. This means t2 satisfies
0 = E [π(X)F (∞ | X) | t2] = E [π(X) | t2], so t2 → s0. However, the first period cutoff for
CS remains finite, at the u1 which satisfies E [π(X) | u1] = E [π(X)(1− F (u1 | X)) | u1]. We
can rearrange this expression to obtain 0 = E [π(X)F (u1 | X) | u1] so that at δ = 1 (and
only there), the cutoff signal is indifferent to drilling after no news in a CS game, and this
signal must be higher than the zero profit signal s0.

At the (limit of the) lowest possible value for δ, we know u1 < t2, and at the (limit of the)
highest possible value for δ, we know u1 > t2. Since u1 is increasing in δ and t2 is decreasing
in δ, and since everything in this setup is continuous, there must be a δ ∈ (0, 1) at which
u1 = t2, and for δ < δ, we must have u1 < t2. This completes the proof.

Appendix E Proofs of partial disclosure propositions

E.1 Proof of Proposition 7

When Z > Z we know that a player with signal u1 can profitably drill under bad news, that
X < Z, because that player gets zero profits from drilling under bad news in the Z = Z
case. By continuity, this implies the existence of a signal smaller than u1 that earns zero
profits from drilling after waiting and learning that its rival’s signal is at or above u1, and
that X < Z, for Z > Z. This proves items 1 and 2.

Because good news involves X values strictly larger than Z, and because we know Z > x∗,
any signal can profitably drill after good news. This proves item 3.

From our analysis of the complete secrecy game, we know a player with signal u1 can’t
earn strictly positive profits from drilling after no news when the cutoff signal is u1, so no
smaller signals can either. Since the cutoff signal remains at u1 for Z > Z, we know that all
signals who wait in such partial disclosure games will not drill after no news. This proves
item 4.

To prove item 5, note that because v1(Z) = u1 for Z ≥ Z, variation in Z ≥ Z only affects
the value of waiting, so it is sufficient to show that the value of waiting is decreasing in Z.
To do this, write out the value of waiting for a player in a partial disclosure game with signal
s and threshold Z as:

WPartial Disclosure(s, Z) = E [π(X)I(X ≥ Z)(1− F (u1 | X)) | s]
+ max (0,E [π(X)I(x < Z)(1− F (u1 | X)) | s])

For values of s where the maximum operator in the second expression is binding (s < v3(Z)),
the value of waiting is decreasing in Z because π(x) is positive for all x ≥ Z ≥ Z > x∗. For
higher values of s, when the maximum operator is non-binding, the expression reduces to:

WPartial Disclosure(s, Z) = E [π(x)(1− F (t1 | x)) | s]
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and this is independent of Z. Thus for any signal that waits, the value of waiting is non-
decreasing in Z.

E.2 First period cutoffs when x∗ ≤ Z < Z

When Z is smaller than Z, it is no longer the case that the first period cutoff is equal to
u1, so the structure of the equilibrium must change. To analyze this, let us return to the
equilibrium definition:

δ−1E [π(X) | v1(Z)] = W (v1(Z), Z)

where
W (v1(Z), Z) = Wgood(v1(Z), Z) +Wbad(v1(Z), Z) +Wnone(v1(Z))

and the individual waiting values are given by:

Wgood(v1(Z), Z) = E [I(X ≥ Z)π(X)(1− F (v1(Z) | X)) | v1(Z)]

Wbad(v1(Z), Z) = max(0,E [I(X < Z)π(X)(1− F (v1(Z) | X)) | v1(Z)])

Wnone(v1(Z)) = max(0,E [π(X)F (v1(Z) | X) | v1(Z)])

We first consider whether it is possible for the firm with the cutoff signal v1(Z) to drill
unconditionally in the second period if it observes that its rival drilled in the first period.
If that were true, then Wbad(v1(Z), Z) > 0, and the definition for v1(Z) would collapse to
the definition we’ve already seen for u1. The solution to that definition is, of course, u1,
and at u1, a firm who learns its rival has a signal higher than u1, but that X ≤ Z < Z,
earns negative profits from drilling. This contradicts our assumption that the firm would
drill unconditionally in the second period if its rival drills first. Thus, in partial disclosure
games where x∗ ≤ Z < Z, the firm with the cutoff type does not drill if it waits, learns that
its rival drilled, and that X < Z. This lets us simplify the equilibrium condition one step
further to:

δ−1E [π(X) | v1(Z)] = E [I(X ≥ Z)π(x)(1− F (v1(Z) | X)) | v1(Z)] +Wnone(v1(Z))

With this simplification, we can show that for x∗ ≤ Z < Z ′ ≤ Z, v1(Z) > v1(Z
′), or

more simply, that v1(Z) is decreasing over that interval. Again, assume the opposite, that
v1(Z) ≤ v1(Z

′). If this were true, then a player with signal v1(Z) would wait in a game
with threshold Z ′, while the same player would drill in a game with threshold Z. Since the
value of drilling is the same in either scenario, this would imply that the value of waiting
with signal v1(Z) in the partial disclosure game with threshold Z is smaller than the value
of waiting with signal v1(Z) in the game with threshold Z ′:

0 > E [I(X ≥ Z)π(X)(1− F (v1(Z))) | v1(Z)]− [I(X ≥ Z ′)π(X)(1− F (v1(Z
′))) | v1(Z)]

+ (max (0,E [π(X)F (v1(Z) | X) | v1(Z)])−max (0,E [π(X)F (v1(Z
′) | X) | v1(Z)]))

To see if this assumption is feasible, we must examine three separate cases regarding which
of the maximums are binding. We will see in each of these cases that the assumption we’ve
made, that v1(Z) ≤ v1(Z

′), leads to a contradiction.
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E.2.1 First (and second) maximum non-binding

If the first maximum is non-binding, then because we are assuming that v1(Z) ≤ v1(Z
′), the

second is non-binding as well, leaving us with:

0 > E [I(Z ≤ X ≤ Z ′)π(X)(1− F (v1(Z
′) | X)) | v1(Z)]

− E [I(X < Z)π(X)(F (v1(Z
′) | X)− F (z1(Z) | X)) | v1(Z)]

The first term in the right-hand side expression is positive, since Z ≥ x∗. By Lemma 2, the
second term is bounded above by E [I(X < Z)π(X)(1− F (v1(Z) | X)) | v1(Z)], and we know
from the previous discussion that a firm with signal v1(Z) does not drill when it observes its
rival did drill, but that X < Z. Thus, the second term is negative. As a result, the entire
right-hand side is positive. But that can’t be smaller than zero, so we have a contradiction,
and must conclude that v1(Z) > v1(Z

′).

E.2.2 Both maximums binding

When both E [π(X)F (v1(Z) | X) | v1(Z)] < 0 and E [π(X)F (v1(Z
′) | X) | v1(Z)] < 0, the

expression simplifies to:

0 > E [I(X ≥ Z ′)π(X)(F (v1(Z
′) | X)− F (v1(Z) | Z)) | v1(Z)]

+ E [I(Z ≤ X < Z ′)π(X)(1− F (v1(Z) | Z)) | v1(Z)]

Both terms in the right-hand side of this expression are positive under the assumption that
v1(Z

′) ≥ v1(Z), so we again have a contradiction, and must conclude that v1(Z) > v1(Z
′).

E.2.3 Only second maximum binding

Finally, when E [π(X)F (v1(Z) | X) | v1(Z)] < 0 but E [π(X)F (v1(Z
′) | X) | v1(Z)] ≥ 0, the

(simplified) expression would be

0 > E [I(Z ≤ X ≤ Z ′)π(X)(1− F (v1(Z) | X)) | v1(Z)]

− E [π(X)F (v1(Z) | X) | v1(Z)]

− E [I(X ≤ Z ′)π(X)(F (v1(Z
′) | X)− F (v1(Z) | X)) | v1(Z)]

The first term on the right-hand side is positive because Z ≥ x∗ and we are assuming that
the second term is negative, so the net effect of the first two terms is positive. To see why
the third term is also negative, start from the payoff to drilling for a player with signal v1(Z

′)
who learns that its rival’s signal is above v1(Z

′) but that X < Z ′. We know this payoff is
negative, and can show that its larger than the third term we are trying to sign:

0 > E [I(X ≤ Z ′)π(X)(1− F (v1(Z
′) | X)) | v1(Z ′)]

> E [I(X ≤ Z ′)π(X)(1− F (v1(Z
′) | X)) | v1(Z)]

> E [I(X ≤ Z ′)π(X)(1− F (v1(Z) | X)) | v1(Z)]

> E [I(X ≤ Z ′)π(X)(F (v1(Z
′) | X)− F (v1(Z) | X)) | v1(Z)]

The first inequality holds because we already saw that a firm with the marginal signal does
not drill on bad news when Z < Z. The second inequality holds because drilling with signal
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v1(Z), under any news about a rival’s signal, is worse than drilling with signal v1(Z
′), under

our assumption that v1(Z
′) > v1(Z). The third inequality holds because news that the rival

signal is better than v1(Z) is worse news than when the rival signal is better than v1(Z
′). The

final inequality holds because the news that the rival’s signal is between v1(Z
′) and v1(Z) is

worse than the news that it is better than v1(Z). We must conclude that our assumption
that v1(Z

′) ≥ v1(Z) is wrong, and that, instead, we have v1(Z) > v1(Z
′).

This completes the proof of Proposition 8, part 1, for the case where Z ≥ x∗.

E.3 First period cutoffs when Z < x∗

The exact same set of steps above will establish that the equilibrium condition for v1(Z)
when Z < x∗ is identical to the equilibrium condition when x∗ ≤ Z < Z. Similarly, we
can employ the same contradiction approach to show that v1(Z) is increasing in the interval
[0, x∗]. This proves Proposition 8, part 1, for the case where Z < x∗.

Note that in the limiting case of Z = 0, the equilibrium condition for v1(Z) collapses
to the familiar form for the equilibrium condition for u1, so we additionally know that the
lowest value v1(Z) can take is u1.

E.4 Equilibrium behavior for players with s < v1(Z)

Firms with signals lower than v1(Z) wait. Like firms with the cutoff signal, if they observe
good news, they drill.26 Because we saw above that players with the marginal signal, v1(Z),
cannot profitably drill under bad news, firms with lower signals also can’t, and as such we
know that v3(Z) > v1(Z) for Z < Z (Proposition 8, part 2).

When a player with a signal below v1(Z) learns that its rival also has a signal below
v1(Z), e.g. there is no news, that player drills if (a) v1(Z) isn’t too low, so that learning
that their rival had a signal below v1(Z) isn’t sufficiently bad, and (b) their own signal is
high enough to justify drilling. Formally, there is a second period cutoff v2(Z), similar to the
cutoff t2 in the full disclosure game, whenever the solution v2(Z) to the following indifference
condition is smaller than v1(Z):

E [π(X)F (v1(z) | X) | v2(Z)] = 0

Like in the full disclosure game, the solution v2(Z) to the above equation might be larger
than v1(Z), in which case there is no late drilling after “no news.” When this can happen

for some values of Z but not others, we define Z̃ as the lowest value of Z at which no news
drilling becomes impossible, i.e., the Z which satisfies v1(Z) = v2(Z), or, equivalently:

E
[
π(X)F (v1(Z̃) | X) | v1(Z̃)

]
= 0

For x∗ < Z ≤ Z̃, a disclosure threshold of Z will induce some no news drilling, for players
with signals smaller than v1(Z) but larger than v2(Z).

Finally, given that we know v1(Z) is decreasing in Z, and that everything in the equi-
librium condition for v1(Z) is continuous, we must have v1(x

∗) = t1 and v2(x
∗) = t2, which

26This assumes Z ≥ x∗. If not, there will be another cutoff signal, similar in spirit to the bad news cutoff
v3(Z), above which players can profitably drill on good news. This will be lower than v1(Z).
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proves Proposition 8, part 4.

E.5 Welfare maximizing partial disclosure

E.5.1 Welfare maximizing Z is no smaller than x∗

We prove the first part of Proposition 9 by taking advantage of the fact that v1(Z) is
increasing on the interval [0, x∗], decreasing on the interval [x∗, Z], and that v1(0) = v1(Z) =
u1. Because v1(Z) is continuous, this means that for any value of 0 ≤ Z < x∗, we can find a
Z ′ that is larger than x∗ with the property that v1(Z) = v1(Z

′). This, in turn, means that
we can easily compare the expected player welfare of a policy Z < x∗ with the corresponding
Z ′ > x∗. In both cases, players who drill early experience the same level of welfare, so it
suffices to compare the value of waiting for players who wait under Z and Z ′. As we’ll see,
the expected value of waiting under Z ′ is always greater than the expected value of waiting
under Z.

Let v = v1(Z) = v1(Z
′). The values of waiting for a player with signal s < z, playing in

the Z and Z ′ games, are:

WZ(s) = E [I(X ≥ Z)π(x)(1− F (z | X)) | s] + max (0,E [π(X)F (z | X) | s])
WZ′

(s) = E [I(X ≥ Z ′)π(x)(1− F (z | X)) | s] + max (0,E [π(X)F (z | X) | s])

Regardless of whether the player is in the Z or the Z ′ game, the term inside the maximum
will be the same, so we can drop it from our consideration. Thus, the difference in waiting
values is

∆(s) = E [I(Z ≤ X ≤ Z ′)π(X)(1− F (z | X)) | s]
= E [φ(X) | s]

The function φ(·) crosses 0 exactly once at x∗, and is negative below x∗, while its posi-
tive above x∗. Additionally, we know a player with signal z must be indifferent between
drilling and waiting in either game, and that drilling has the same value in both games, then
E [φ(X) | z] = 0. Players with signals lower than z, who place more weight on lower outcomes
than players with siganals equal to z, so we know that for s < z, we have E [φ(X) | s] < 0,
which means the value of waiting under Z must be lower than the value of waiting under
Z ′. This proves Proposition 9, part 1, and we must conclude that the welfare maximizing Z
is never lower than x∗.

E.5.2 Z̃ is the welfare maximizing disclosure threshold among disclosure policies
which prevent no news drilling

In comparing full disclosure and complete secrecy, we were able to establish that full disclo-
sure generates higher welfare than complete secrecy by way of a signal-by-signal analysis,
under the special case that t2 > u1. When this is true, for every signal s, players are either
indifferent to which game they played, or strictly prefer playing full disclosure. If two dis-
closure thresholds both prevent no news drilling from happening, it turns out that we can
make a similar comparison.

Let Z̃ be the lowest disclosure threshold that prevents no news drilling from happening,
and if there is no no-news drilling at Z = x∗, let Z̃ = x∗. Consider two disclosure thresholds,
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Z1 and Z2, such that Z̃ ≤ Z1 < Z2 ≤ Z. We will compare player welfare at a given signal
under each of these games.

Because of the monotonicity of v1(·), we have v1(Z1) > v1(Z2), so a player with a signal
s > v1(Z1) drills early in both games and experiences the same welfare. Players with signals
between v1(Z2) and v1(Z1) drill early in the Z2 game but wait in the Z1 game, and are
strictly better off in the Z1 game by revealed preference.

Finally, players with signals s < v1(Z2) wait in both games. Because we’ve assumed that
both Z’s prevent no news drilling, the waiting values are:

WZ1(s) = E [I(X ≥ Z1)π(X)(1− F (v1(Z1) | X)) | s]
WZ2(s) = E [I(X ≥ Z2)π(X)(1− F (v1(Z2) | X)) | s]

The difference in waiting values is thus:

∆(s) = WZ1(s)−WZ2(s)

= E [I(Z1 ≤ X ≤ Z2)π(X)(1− F (v1(Z1) | X)) | s]
− E [I(X > Z2)π(X)(F (v1(Z1 | X))− F (v1(Z2) | X)) | s]
= E [φ(X) | s]

The first term in this expression is profits that a player who waits in Z1 earns, but would
not earn in Z2, due to the higher disclosure threshold. Because Z1 > x∗, this is positive.
The second term represents profits that a player who waits in Z2 earns, but would not earn
in Z1, due to its rival’s lower cutoff strategy. This must be a loss, relative to Z2. Like in
our exploration of the full disclosure and complete secrecy waiting values under the u1 > t2
condition, this difference in waiting values can be expressed as the expected value of a
function φ(X) which has a single crossing, and so we can (possibly) sign it with knowledge
of its value at s = v1(Z2).

To see this, first note that a player with signal s = v1(Z2) is indifferent between drilling
and waiting when the threshold is Z2. However, the same player strictly prefers to wait
when the threshold is Z1. Thus, we know that ∆(v1(Z2)) > 0. Next, note that for x in the
range [Z1, Z2), φ(x) > 0, and φ(x) < 0 when x ≥ Z2, so φ(·) has a single crossing at x = K2.
Since we know ∆(v1(Z2)) > 0, and since φ(x) is positive for lower values of x and negative
for higher values of x, then the Hendricks & Kovenock MLRP/single crossing lemma again
implies that ∆(s) > 0 for s < v1(Z2).

Thus, players with signals below v1(Z2) strictly prefer playing a partial disclosure game
with threshold Z1 to playing a partial disclosure game with threshold Z2, and we can conclude
that for all signals, players do no worse playing the Z1 game than the Z2 game. Since our
choice of Z1 < Z2 was generic aside from the requirement that K̃ ≤ Z1 < Z2 ≤ K, we can
conclude that K̃ offers the highest player welfare among all partial disclosure thresholds in

the range
[
K̃,∞

)
. This proves Proposition 9, part 2.

As a corollary, note that if there is no no-news drilling at Z = x∗, then there is no no-
news drilling at any partial disclosure level, and we can conclude that the optimal partial
disclosure level is Z = x∗.
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Appendix F Additional Tables and Figures

Figure A.1: Distribution of predicted output

(a) All grids in DeWitt regions 12 and 13

(b) Grids leased by 2005

Output predictions generated using the krigging procedure outlined in section 5.
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